7a556d297a7e4cc0871f7189c2235d7422b30656
max
  Thu Jul 31 07:17:27 2025 -0700
adding the json command to cbGenes

diff --git src/cbPyLib/cellbrowser/genes.py src/cbPyLib/cellbrowser/genes.py
index cbdac9f..f1890fe 100755
--- src/cbPyLib/cellbrowser/genes.py
+++ src/cbPyLib/cellbrowser/genes.py
@@ -1,623 +1,629 @@
 # functions to guess the gene model release given a list of gene IDs
 # tested on python3 and python2
 import logging, sys, optparse, string, glob, gzip, json, subprocess
 from io import StringIO
 
 from collections import defaultdict
 from os.path import join, basename, dirname, isfile
 
 from .cellbrowser import sepForFile, getStaticFile, openFile, splitOnce, setDebug, getStaticPath
 from .cellbrowser import getGeneSymPath, downloadUrlLines, getSymToGene, getGeneBedPath, errAbort, iterItems
 from .cellbrowser import findCbData, readGeneSymbols, getGeneJsonPath, getDownloadsUrl
 
 # ==== functions =====
 def cbGenes_parseArgs():
     " setup logging, parse command line arguments and options. -h shows auto-generated help page "
     parser = optparse.OptionParser("""usage: %prog [options] command - download gene model files and auto-detect the version.
 
     Commands for using gene models:
     fetch <geneType> - download pre-built geneId -> symbol table from UCSC
     fetch <assembly>.<geneType> - download pre-built gene models and symbol table from UCSC
     guess <inFile> <organism> - Guess best gene type. Reads the first tab-sep field from inFile and prints genetypes sorted by % of matching unique IDs to inFile.
     check <inFile> <geneType> - Check how well genes match given geneType
 
     Commands for building new gene model files:
     build <assembly>.<geneType> - Download a gene model file from UCSC, pick one transcript per gene and save to ~/cellbrowserData/genes/<db>.<geneType>.bed.gz and <geneType>.symbols.tsv.gz
     allSyms [human|mouse] - Build one big table with geneId <-> symbol, valid for all Gencode versions, always use most recent symbol
     add fname geneType - Add a two-column .tsv file to your local directory. First column is gene ID, second column is symbol.
                          e.g. 'cbGenes add myGenes.tsv sea-anemone'
     index - Build the -unique index files and also run 'allSyms' for both human and mouse
     push - Only at UCSC: copy all gene files to the export directory on hgwdev
 
     Run "fetch" or "build" without arguments to list the available files at UCSC.
 
     ls - list all available (built or downloaded)  gene models on this machine
 
     Examples (common):
     %prog fetch                   # show the files that are available for the 'build' command
     %prog fetch gencode-34        # geneId -> symbol mapping for human gencode relase 34
     %prog fetch hg38.gencode-34   # gene -> chrom mapping for human gencode relase 34
     %prog ls
     %prog guess genes.txt mouse   # guess the best gencode version for this file
     %prog check features.tsv.gz gencode-40 # check if the genes match gencode-40 and which ones don't
 
     Examples (rare - if you build your own gene models):
     %prog build                   # show the files that are available
     %prog build mm10 gencode-M25
     %prog index # used at UCSC to prepare the files for 'guess'
     %prog allSyms human # build big geneId -> symbol table from all 
+    %prog json ce11 wormbase235 # build JSON file from a .bed.gz file - only needed for model organisms
     """)
 
     parser.add_option("-d", "--debug", dest="debug", action="store_true", help="show debug messages")
     (options, args) = parser.parse_args()
 
     if args==[] or (args[0]=="guess" and len(args)==1):
         parser.print_help()
         exit(1)
 
     setDebug(options.debug)
     return args, options
 
 # ----------- main --------------
 def parseSignatures(org, geneIdType):
     " return dict with gene release -> list of unique signature genes "
     ret = {}
     logging.info("Parsing gencode release signature genes")
     fname = getStaticFile("genes/%s.%s.unique.tsv.gz" % (org, geneIdType))
     logging.info("Parsing %s" % fname)
     genes = set()
     verToGenes = {}
     for line in openFile(fname):
         if line.startswith("#"):
             continue
         version, geneIds = line.rstrip("\n").split('\t')
         geneIds = set(geneIds.split("|"))
         verToGenes[version] = geneIds
 
     return verToGenes
         
 def guessGeneIdType(genes):
     " return tuple organism / identifier type "
     logging.debug("Trying to guess organism and identifier type (syms or ids)")
     gene1 = list(genes)[0]
     if gene1.startswith("ENSG"):
         return "human", "ids"
     if gene1.startswith("ENSMUS"):
         return "mouse", "ids"
 
     upCount = 0
     for g in genes:
         if g.isupper():
             upCount += 1
 
     logging.debug("%d of %d genes are uppercase" % (upCount, len(genes)))
     if upCount/float(len(genes)) > 0.8:
         return "human", "syms"
     else:
         return "mouse", "syms"
 
 def parseGenes(fname):
     " return gene IDs in column 1 of file "
     fileGenes = set()
     headDone = False
     logging.info("Parsing first column from %s" % fname)
     sep = sepForFile(fname)
     for line in openFile(fname):
         if not headDone:
             headDone = True
             continue
         geneId = splitOnce(line[:50], sep)[0]
         geneId = geneId.strip("\n").strip("\r").strip()
         #fileGenes.add(geneId.split('.')[0].split("|")[0])
         fileGenes.add(geneId.split("|")[0])
     logging.info("Read %d genes" % len(fileGenes))
     return fileGenes
 
 def guessGencodeVersion(fileGenes, signGenes, stripVersion):
     logging.info("Number of genes that are only in a gene model release:")
     infos = []
     if stripVersion:
         fileGenes = set([x.split(".")[0] for x in fileGenes])
 
     for version, uniqGenes in signGenes.items():
         if stripVersion:
             uniqGenes = set([x.split(".")[0] for x in uniqGenes])
 
         intersection = list(fileGenes.intersection(uniqGenes))
         share = 100.0 * (float(len(intersection)) / len(uniqGenes))
         intLen = len(intersection)
         geneCount = len(uniqGenes)
         infoStr = "release "+version+": %0.2f%%, %d out of %d" % (share, len(intersection), len(uniqGenes))
         if len(intersection)!=0:
             expStr = ", ".join(intersection[:5])
             infoStr += (" e.g. "+ expStr)
         infos.append((share, version, intLen, geneCount, infoStr))
 
     infos.sort(reverse=True)
     bestRelease = infos[0][1]
 
     for info in infos:
         share, version, intLen, geneCount, infoStr = info
         print(infoStr)
 
     return bestRelease
 
 def countDots(inGenes):
     " count how many gene names have a dot in them "
     c = 0
     for g in inGenes:
         if "." in g:
             c+=1
     return c
 
 def guessNeedsStripping(inGenes):
     " return True if comparisons should be done without version information "
     dotCount = countDots(inGenes)
     if dotCount==len(inGenes):
         logging.info("All gene names have a dot in them. Assuming that input genes have a version")
         stripVersion  = False
     elif dotCount==0:
         logging.info("No gene ID has a dot in it. Stripping all version strings for the comparisons.")
         stripVersion = True
     else:
         logging.info("%d input genes have a dot in them, out of %d genes in total. Assuming that genes are symbols and not stripping the part after the dot.." % (dotCount, len(inGenes)))
         stripVersion  = True
     return stripVersion
 
 def checkGenesAgainstRelease(inGenes, geneType, bestRelease, stripVersion):
     " output how well a release matches the input genes "
     allIds = readGeneSymbols(bestRelease)
     if stripVersion:
         inGenes = set([x.split(".")[0] for x in inGenes])
         allIds = set([x.split(".")[0] for x in allIds])
 
     if geneType=="syms":
         allIds = allIds
     notFoundIds = inGenes - set(allIds)
     print("%d of the genes in the input are not part of %s" % (len(notFoundIds), bestRelease))
     print("Examples: %s" % " ".join(list(notFoundIds)[:50]))
 
 def guessGencode(fname, org):
     inGenes = parseGenes(fname)
     stripVersion = guessNeedsStripping(inGenes)
 
     inGenes = set(inGenes)
     guessOrg, geneType = guessGeneIdType(inGenes)
     if org is None:
         org = guessOrg
     else:
         logging.info("Organism was provided on command line: %s (no need to guess organism)" % org)
     logging.info("Assuming organism %s, IDs are %s" % (org, geneType))
     signGenes = parseSignatures(org, geneType)
     bestRelease = guessGencodeVersion(inGenes, signGenes, stripVersion)
     print("Best %s Gencode release\t%s" % (org, bestRelease))
 
     checkGenesAgainstRelease(inGenes, geneType, bestRelease, stripVersion)
 
 def buildSymbolTable(geneType):
     if geneType.startswith("gencode"):
         release = geneType.split("-")[1]
         rows = iterGencodePairs(release)
     else:
         errAbort("unrecognized gene type '%s'" % geneType)
 
     outFname = getStaticPath(getGeneSymPath(geneType))
     writeRows(rows, outFname)
 
 def iterGencodePairs(release, doTransGene=False):
     " generator, yields geneId,symbol or transId,geneId pairs for a given gencode release"
     # e.g. trackName = "wgEncodeGencodeBasicV34"
     #attrFname = trackName.replace("Basic", "Attrs").replace("Comp", "Attrs")
     #assert(release[1:].isdigit())
     db = "hg38"
     if release[0]=="M":
         db = "mm10"
         if int(release.strip("M"))>=26:
             db='mm39'
     if release in ["7", "14", "17", "19"] or "lift" in release:
         db = "hg19"
     url = "https://hgdownload.gi.ucsc.edu/goldenPath/%s/database/wgEncodeGencodeAttrsV%s.txt.gz" %  (db, release)
     logging.info("Downloading %s" % url)
     doneIds = set()
 
     lines = downloadUrlLines(url)
     for line in lines:
         row = line.rstrip("\n").split("\t")
 
         if doTransGene:
             # key = transcript ID, val is geneId
             key = row[4]
             val = row[0]
             val = val
         else:
             # key = geneId, val is symbol
             key = row[0]
             key = key
             val = row[1]
 
         if key not in doneIds:
             yield key, val
             doneIds.add(key)
 
 def iterGencodeBed(db, release):
     " generator, yields a BED12+1 with a 'canonical' transcript for every gencode comprehensive gene "
     transToGene = dict(iterGencodePairs(release, doTransGene=True))
 
     url = "http://hgdownload.gi.ucsc.edu/goldenPath/%s/database/wgEncodeGencodeCompV%s.txt.gz" % (db, release)
     logging.info("Downloading %s" % url)
     geneToTransList = defaultdict(list)
     for line in downloadUrlLines(url):
         row = tuple(line.split('\t'))
         transId = row[1]
         geneId = transToGene[transId]
         score = int(''.join(c for c in geneId if c.isdigit())) # extract only the xxx part of the ENSGxxx ID
         geneToTransList[geneId].append( (score, row) )
 
     logging.info("Picking one transcript per gene")
     for geneId, transList in iterItems(geneToTransList):
         transList.sort() # prefer older transcripts
         canonTransRow = transList[0][1]
         binIdx, name, chrom, strand, txStart, txEnd, cdsStart, cdsEnd, exonCount, exonStarts, exonEnds, score, name2, cdsStartStat, cdsEndStat, exonFrames = canonTransRow
         blockStarts = []
         blockLens = []
         for exonStart, exonEnd in zip(exonStarts.split(","), exonEnds.split(",")):
             if exonStart=="":
                 continue
             blockSize = int(exonEnd)-int(exonStart)
             blockStarts.append(exonStart)
             blockLens.append(str(blockSize))
         newRow = [chrom, txStart, txEnd, geneId, score, strand, cdsStart, cdsEnd, exonCount, ",".join(blockLens), ",".join(blockStarts), name2]
         yield newRow
 
 def writeRows(rows, outFname):
     with openFile(outFname, "wt") as ofh:
         for row in rows:
             ofh.write("\t".join(row))
             ofh.write("\n")
     logging.info("Wrote %s" % outFname)
 
 def buildLocusBed(db, geneType):
     " build a BED file with a 'canonical' transcript for every gene and a json file for it "
     if geneType.startswith("gencode"):
         release = geneType.split("-")[1]
         rows = iterGencodeBed(db, release)
     else:
         errAbort("Unknown gene model type: %s" % geneType)
 
     outFname = getStaticPath(getGeneBedPath(db, geneType))
     writeRows(rows, outFname)
 
     jsonFname = getStaticPath(getGeneJsonPath(db, geneType))
     bedToJson(db, geneType, jsonFname)
 
 def listModelsLocal():
     " print all gene models on local machine "
 
     dataDir = join(findCbData(), "genes")
     print("Local cell browser genes data directory: %s" % dataDir)
     fnames = glob.glob(join(dataDir, "*.symbols.tsv.gz"))
     names = [basename(x).split(".")[0] for x in fnames]
     print("Installed gene/symbol mappings:")
     print("\n".join(names))
     print()
 
     fnames = glob.glob(join(dataDir, "*.bed.gz"))
     names = [basename(x).replace(".bed.gz","") for x in fnames]
     print("Installed gene/chrom-location mappings:")
     print("\n".join(names))
 
 def addFileLocal(fname, name):
     " add a file to the local sym table dir"
     dataDir = join(findCbData(), "genes")
     newFname = name+".symbols.tsv.gz"
     newPath = join(dataDir, newFname)
 
     lines = open(fname).readlines()
     ofh = gzip.open(newPath, "wt")
     for l in lines:
         assert("\t" in l) # every line must contain at least one tab character
         l = l.strip() # we're getting DOS and Mac line endings sometimes...
         ofh.write(l)
         ofh.write("\n")
     ofh.close()
     logging.info("Wrote %s" % newPath)
     logging.info("You can now use the value '%s' in your cellbrowser.conf file as a value for geneIdType" % name)
 
 def pushLocal():
     " copy all local files to export directory "
     srcDir = join(findCbData(), "genes/")
     targetDir = "/usr/local/apache/htdocs-cells/downloads/cellbrowserData/genes/"
     cmd = ["rsync", "-rvzp", srcDir, targetDir]
     subprocess.run(cmd, check=True)
     logging.info("Updated files in %s" % targetDir)
 
 def iterBedRows(db, geneIdType):
     " yield BED rows of gene models of given type "
     fname = getStaticPath(getGeneBedPath(db, geneIdType))
     logging.info("Reading BED file %s" % fname)
     with openFile(fname) as ofh:
         for line in ofh:
             row = line.rstrip("\n\r").split("\t")
             yield row
 
 def parseApacheDir(lines):
     fnames = []
     for l in lines:
         hrefCount = l.count("<a href=")
         if hrefCount==1:
             if "Parent Directory<" in l: 
                 continue
             fname = l.split('<a href="')[1].split('"')[0]
             fnames.append(fname)
     return fnames
 
 def listModelRemoteFetch():
     " print all gene models that can be downloaded "
     url = join(getDownloadsUrl(), "genes")
     lines = downloadUrlLines(url)
     fnames = parseApacheDir(lines)
     geneFnames = [f.replace(".bed.gz","") for f in fnames if f.endswith(".bed.gz")]
     symFnames = [f.replace(".symbols.tsv.gz", "") for f in fnames if f.endswith(".symbols.tsv.gz")]
 
     sep = "\n"
 
     print("Pre-built gene model mapping files available for 'fetch' at %s" % url)
     print(sep.join(geneFnames))
     #for g in geneFnames:
         #print(g.replace(".bed.gz",""))
 
     print()
     print("Pre-built geneId/symbol tables available for 'fetch' at %s" % url)
     print(sep.join(symFnames))
     #for g in symFnames:
         #print(g.replace(".symbols.tsv.gz", ""))
 
 def listModelRemoteBuild():
     sep = "\n"
     urls = [("hg38", "https://hgdownload.gi.ucsc.edu/goldenPath/hg38/database/"),
             ("mm10", "https://hgdownload.gi.ucsc.edu/goldenPath/mm10/database/"),
             ("mm39", "https://hgdownload.gi.ucsc.edu/goldenPath/mm39/database/"),
             ("hg19", "https://hgdownload.gi.ucsc.edu/goldenPath/hg19/database/")
             ]
 
     allNames = defaultdict(list)
     for db, url in urls:
         print()
         print("Files available for 'build' for assembly %s (%s)" % (db, url))
         lines = downloadUrlLines(url)
         fnames = parseApacheDir(lines)
         geneFnames = [x for x in fnames if x.startswith("wgEncodeGencodeAttrs") and x.endswith(".txt.gz")]
         relNames = [x.replace("wgEncodeGencodeAttrsV", "gencode-").replace(".txt.gz", "") for x in geneFnames]
         allNames[db].extend(relNames)
         print(sep.join(relNames))
 
     #for db, names in allNames.items():
         #for name in names:
             ##print("%s\t%s" % (db, name))
             #print(name)
 
 def keepOnlyUnique(dictSet):
     """ give a dict with key -> set, return a dict with key -> set, but only with elements in the set that
     that don't appear in any other set
     """
     uniqVals = {}
     for key1, origVals in dictSet.items():
         vals = set(list(origVals))
 
         for key2 in dictSet.keys():
             if key1==key2:
                 continue
             vals = vals - dictSet[key2]
         uniqVals[key1] = vals
 
     setList = list(dictSet.values())
     allCommon = set.intersection(*setList)
     return uniqVals, len(allCommon)
 
 def writeUniqs(dictSet, outFname):
     " wrote to output file in format <key>tab<comma-sep-list of vals> "
     logging.info("Writing to %s" % outFname)
     with openFile(outFname, "wt") as ofh:
         for key, vals in dictSet.items():
             ofh.write("%s\t%s\n" % (key, "|".join(vals)))
 
 def bigSymTable(org):
     """ build one big table that covers all gencode releases for an organism, org can be "mouse" or "human"
     """
     logging.info("Processing: %s" % org)
     infileMask = "gencode*.symbols.tsv.gz"
     dataDir = join(findCbData(), "genes")
     fnames = glob.glob(join(dataDir, infileMask))
 
     filtFnames = []
     for fname in fnames:
         baseName = basename(fname)
         # skip weird hg19 files and the big existing tables
         if ("lift" in baseName or "mouse" in baseName or "human" in baseName or "hg19" in baseName):
             continue
         version = baseName.split(".")[0].split("-")[1].lower()
         if (org=="human" and not "m" in version) or \
             (org=="mouse" and "m" in version):
             filtFnames.append((int(version.strip("m")), fname))
 
     filtFnames.sort()
 
     # read in order, such that new symbols overwrite old ones
     geneToSym = {}
     for idx, fname in filtFnames:
         logging.info("Reading "+fname)
         for line in openFile(fname):
             row = line.rstrip("\n").split("\t")
             geneId, sym = row[:2]
             geneId = geneId.split(".")[0]
             geneToSym[geneId] = sym
 
     outFname = getStaticPath(getGeneSymPath("gencode-"+org))
 
     writeRows(geneToSym.items(), outFname)
 
 def uniqueIds(org):
     """ find unique identifiers in all symbols and geneIds of infileMask and write to
     outBase.{syms,ids}.unique.syms.tsv.gz
     """
     logging.info("Processing: %s" % org)
     infileMask = "gencode*.symbols.tsv.gz"
     dataDir = join(findCbData(), "genes")
     fnames = glob.glob(join(dataDir, infileMask))
     allSyms = {}
     allIds = {}
     for fname in fnames:
         baseName = basename(fname)
         if "lift" in baseName or "mouse" in baseName or "human" in baseName:
             continue
         if org=="human" and "M" in baseName:
             continue
         if org=="mouse" and not "M" in baseName:
             continue
         geneType = basename(fname).split(".")[0]
         logging.info("Reading %s" % fname)
 
         syms = set()
         ids = set()
         for line in openFile(fname):
             row = line.rstrip("\n").split("\t")
             geneId, sym = row[:2]
             syms.add(sym)
             ids.add(geneId)
         allSyms[geneType] = syms
         allIds[geneType] = ids
 
     # force refseq into this
     syms = []
     fname = getStaticFile("genes/entrez-%s.symbols.tsv.gz" % (org))
     for line in openFile(fname):
         if line.startswith("#"):
             continue
         geneId, sym = line.rstrip("\n").split("\t")
         syms.append(sym)
     allSyms["entrez"] = set(syms)
 
     logging.info("Finding unique values")
     uniqSyms, commonSyms = keepOnlyUnique(allSyms)
     uniqIds, commonIds = keepOnlyUnique(allIds)
     logging.info("%d symbols and %d geneIds are shared among all releases" % (commonSyms, commonIds))
 
     writeUniqs(uniqSyms, join(dataDir, org+".syms.unique.tsv.gz"))
     writeUniqs(uniqIds, join(dataDir, org+".ids.unique.tsv.gz"))
 
 def bedToJson(db, geneIdType, jsonFname):
     " convert BED file to more compact json file: chrom -> list of (start, end, strand, gene) "
     geneToSym = readGeneSymbols(geneIdType)
 
     # index transcripts by gene
     bySym = defaultdict(dict)
     for row in iterBedRows(db, geneIdType):
-        chrom, start, end, geneId, score, strand = row[:6]
-        sym = geneToSym[geneId]
+        chrom, start, end, transId, score, strand = row[:6]
+        if not transId in geneToSym:
+            logging.warn("%s does not have a gene symbol" % transId)
+            sym = transId
+        else:
+            sym = geneToSym[transId]
         start = int(start)
         end = int(end)
         transLen = end-start
-        rawGeneId = geneId.split(".")[0] # for lookups, we hopefully will never need the version ID...
-        fullGeneId = rawGeneId+"|"+sym
-        bySym[fullGeneId].setdefault(chrom, []).append( (transLen, start, end, strand, geneId) )
+        rawTransId = transId.split(".")[0] # for lookups, we hopefully will never need the version ID...
+        fullTransId = rawTransId+"|"+sym
+        bySym[fullTransId].setdefault(chrom, []).append( (transLen, start, end, strand, transId) )
 
     symLocs = defaultdict(list)
-    for geneId, chromDict in bySym.items():
+    for transId, chromDict in bySym.items():
         for chrom, transList in chromDict.items():
             transList.sort(reverse=True) # take longest transcript per chrom
             _, start, end, strand, transId = transList[0]
-            symLocs[chrom].append( (start, end, strand, geneId) )
+            symLocs[chrom].append( (start, end, strand, transId) )
 
     sortedLocs = {}
     for chrom, geneList in symLocs.items():
         geneList.sort()
         sortedLocs[chrom] = geneList
 
     ofh = open(jsonFname, "wt")
     outs = json.dumps(sortedLocs)
     #md5 = hashlib.md5(outs.encode("utf8")).hexdigest()[:10]
     ofh.write(outs)
     ofh.close()
     logging.info("Wrote %s" % jsonFname)
     logging.info("If this is a new .json file and you are on hgwdev, copy it now to /usr/local/apache/htdocs-cells/downloads/cellbrowserData/genes/ and note this directory for the dataset release push to the RR. The reason is that users may want to cbBuild using this gene transcript set and that is easier if we provide the .json file")
 
     #fileInfo[code] = {"label":label, "file" : jsonFname, "md5" :md5}
 
 def buildGuessIndex():
     " read all gene model symbol files from the data dir, and output <organism>.unique.tsv.gz "
     dataDir = join(findCbData(), "genes")
     uniqueIds("human")
     uniqueIds("mouse")
     bigSymTable("human")
     bigSymTable("mouse")
 
 def fetch(fileDesc):
     " download symbol or gene files to local dir "
     if "." in fileDesc:
         # user wants a gene model file
         ext = "bed.gz"
     else:
         ext = "symbols.tsv.gz"
     fname = getStaticFile("genes/%s.%s" % (fileDesc, ext), verbose=True)
     return
 
 def cbGenesCli():
     args, options = cbGenes_parseArgs()
 
     command = args[0]
     if command=="guess":
         fname = args[1]
         org = None
         if len(args)==3:
             org = args[2]
         guessGencode(fname, org)
 
     elif command == "check":
         fname = args[1]
         release = args[2]
         inGenes = parseGenes(fname)
         guessOrg, geneType = guessGeneIdType(inGenes)
         stripVersion = guessNeedsStripping(inGenes)
         checkGenesAgainstRelease(inGenes, geneType, release, stripVersion)
 
     elif command=="fetch":
         if len(args)==1:
             listModelRemoteFetch()
         else:
             arg = args[1]
             fetch(arg)
 
     elif command=="syms": # undocumented
         geneType = args[1]
         buildSymbolTable(geneType)
 
     elif command=="build":
         if len(args)==1:
             listModelRemoteBuild()
         else:
             db, geneType = args[1:]
             buildSymbolTable(geneType)
             buildLocusBed(db, geneType)
 
     elif command=="ls":
         listModelsLocal()
 
     elif command=="index":
         buildGuessIndex()
 
     elif command=="allSyms":
         org = args[1]
         bigSymTable(org)
 
     elif command=="add":
         addFileLocal(args[1], args[2])
 
     elif command=="push":
         pushLocal()
 
-    elif command=="json": # undocumented
-        db, geneType, outFname = args[1:]
-        bedToJson(db, geneType, outFname)
+    elif command=="json":
+        db, geneType = args[1:]
+        jsonFname = getStaticPath(getGeneJsonPath(db, geneType))
+        bedToJson(db, geneType, jsonFname)
     else:
         errAbort("Unrecognized command: %s" % command)