b15ea2ffb9f2fca6b6cb764ed39524f443828274
angie
  Wed May 4 15:48:23 2011 -0700
Fix for warning message produced only when -O is used: compiler thinksa variable might be used uninitialized, although it is initialized in
all if/else cases.  Thanks Tim for catching that!

diff --git src/lib/hacTree.c src/lib/hacTree.c
index f05dcc0..3d8d90c 100644
--- src/lib/hacTree.c
+++ src/lib/hacTree.c
@@ -1,210 +1,210 @@
 /* hacTree - Hierarchical Agglomerative Clustering a list of inputs into a binary tree */
 
 #include "common.h"
 #include "hacTree.h"
 
 static struct hacTree *leafNodesFromItems(const struct slList *itemList, int itemCount,
 					  struct lm *localMem)
 /* Allocate & initialize leaf nodes that contain only items. */
 {
 struct hacTree *leafNodes = lmAlloc(localMem, itemCount * sizeof(struct hacTree));
 int i = 0;
 const struct slList *item = itemList;
 while (item != NULL && i < itemCount)
     {
     // needMem zeroes the memory, so initialize only non-NULL stuff.
     struct hacTree *node = &(leafNodes[i]);
     if (i < itemCount-1)
 	node->next = &(leafNodes[i+1]);
     node->itemOrCluster = (struct slList *)item;
     i++;
     item = item->next;
     }
 return leafNodes;
 }
 
 struct sortWrapper
 /* We need to compare nodes' itemOrClusters using cmpF and extraData;
  * qsort's comparison function doesn't have a way to pass in extraData,
  * so we need to point to it from each qsort element. */
 {
     struct hacTree *node;  // contains itemOrCluster to be compared
     hacCmpFunction *cmpF;  // user-provided itemOrCluster comparison function
     void *extraData;       // user-provided aux data for cmpF
 };
 
 static int sortWrapCmp(const void *v1, const void *v2)
 /* Unpack sortWrappers and run cmpF on nodes' itemOrClusters with extraData. */
 {
 const struct sortWrapper *w1 = v1, *w2 = v2;
 return w1->cmpF(w1->node->itemOrCluster, w2->node->itemOrCluster, w1->extraData);
 }
 
 static struct sortWrapper *makeSortedWraps(struct hacTree *leafNodes, int itemCount,
 					   struct lm *localMem, hacCmpFunction cmpF,
 					   void *extraData)
 /* Use cmpF and extraData to sort wrapped leaves so that identical leaves will be adjacent. */
 {
 struct sortWrapper *leafWraps = lmAlloc(localMem, itemCount * sizeof(struct sortWrapper));
 int i;
 for (i=0;  i < itemCount;  i++)
     {
     leafWraps[i].node = &(leafNodes[i]);
     leafWraps[i].cmpF = cmpF;
     leafWraps[i].extraData = extraData;
     }
 qsort(leafWraps, itemCount, sizeof(struct sortWrapper), sortWrapCmp);
 return leafWraps;
 }
 
 INLINE void initNode(struct hacTree *node, const struct hacTree *left, const struct hacTree *right,
 		     hacDistanceFunction *distF, hacMergeFunction *mergeF, void *extraData)
 /* Initialize node to have left and right as its children.  Leave parent pointers
  * alone -- they would be unstable during tree construction. */
 {
 node->left = (struct hacTree *)left;
 node->right = (struct hacTree *)right;
 node->childDistance = distF(left->itemOrCluster, right->itemOrCluster, extraData);
 node->itemOrCluster = mergeF(left->itemOrCluster, right->itemOrCluster, extraData);
 }
 
 INLINE struct hacTree preClusterNodes(const struct sortWrapper *leafWraps, int i, int runLength,
 				      hacDistanceFunction *distF, hacMergeFunction *mergeF,
 				      void *extraData, struct lm *localMem)
 /* Caller has allocated a node, and this returns what to store there:
  * a recursively constructed cluster of nodes extracted from wrapped
  * leafNodes (leafWraps) starting at i, for runLength items. */
 {
-struct hacTree ret;
+struct hacTree ret = {NULL, NULL, NULL, NULL, 0, NULL};
 if (runLength > 2)
     {
     struct hacTree *newClusters = lmAlloc(localMem, 2 * sizeof(struct hacTree));
     int halfLength = runLength/2;
     newClusters[0] = preClusterNodes(leafWraps, i, halfLength,
 				     distF, mergeF, extraData, localMem);
     newClusters[1] = preClusterNodes(leafWraps, i+halfLength, runLength-halfLength,
 				     distF, mergeF, extraData, localMem);
     initNode(&ret, &(newClusters[0]), &(newClusters[1]), distF, mergeF, extraData);
     }
 else if (runLength == 2)
     {
     initNode(&ret, leafWraps[i].node, leafWraps[i+1].node, distF, mergeF, extraData);
     }
 else
     ret = *(leafWraps[i].node);
 return ret;
 }
 
 static struct hacTree *sortAndPreCluster(struct hacTree *leafNodes, int *retItemCount,
 					 struct lm *localMem, hacDistanceFunction *distF,
 					 hacMergeFunction *mergeF, hacCmpFunction *cmpF,
 					 void *extraData)
 /* Use cmpF and extraData to sort wrapped leaf nodes so that identical leaves will be adjacent,
  * then replace leaves with clusters of identical leaves where possible.  Place new
  * (hopefully smaller) item count in retItemCount. */
 {
 int itemCount = *retItemCount;
 struct sortWrapper *leafWraps = makeSortedWraps(leafNodes, itemCount, localMem, cmpF, extraData);
 struct hacTree *newLeaves = lmAlloc(localMem, itemCount * sizeof(struct hacTree));
 int i=0, newI=0;
 while (i < itemCount)
     {
     int nextRunStart;
     for (nextRunStart = i+1;  nextRunStart < itemCount; nextRunStart++)
 	if (distF(leafWraps[i].node->itemOrCluster, leafWraps[nextRunStart].node->itemOrCluster,
 		  extraData) != 0)
 	    break;
     int runLength = nextRunStart - i;
     newLeaves[newI] = preClusterNodes(leafWraps, i, runLength, distF, mergeF, extraData, localMem);
     i = nextRunStart;
     newI++;
     }
 *retItemCount = newI;
 return newLeaves;
 }
 
 static struct hacTree *pairUpItems(const struct slList *itemList, int itemCount,
 				   int *retPairCount, struct lm *localMem,
 				   hacDistanceFunction *distF, hacMergeFunction *mergeF,
 				   hacCmpFunction *cmpF, void *extraData)
 /* Allocate & initialize leaf nodes and all possible pairings of leaf nodes
  * which will be our seed clusters.  If cmpF is given, pre-sort the leaf nodes
  * and pre-cluster identical leaves before generating seed clusters. */
 {
 struct hacTree *leafNodes = leafNodesFromItems(itemList, itemCount, localMem);
 if (cmpF != NULL)
     leafNodes = sortAndPreCluster(leafNodes, &itemCount, localMem,
 				  distF, mergeF, cmpF, extraData);
 int pairCount = itemCount * (itemCount-1) / 2;
 struct hacTree *pairHeap = lmAlloc(localMem, pairCount * sizeof(struct hacTree));
 int i, j, pairIx;
 for (i=0, pairIx=0;  i < itemCount-1;  i++)
     for (j=i+1;  j < itemCount;  j++, pairIx++)
 	initNode(&(pairHeap[pairIx]), &(leafNodes[i]), &(leafNodes[j]), distF, mergeF, extraData);
 *retPairCount = pairCount;
 return pairHeap;
 }
 
 struct hacTree *hacTreeFromItems(const struct slList *itemList, struct lm *localMem,
 				 hacDistanceFunction *distF, hacMergeFunction *mergeF,
 				 hacCmpFunction *cmpF, void *extraData)
 /* Using distF, mergeF, optionally cmpF and binary tree operations,
  * perform a hierarchical agglomerative (bottom-up) clustering of
  * items.  To free the resulting tree, lmCleanup(&localMem). */
 {
 if (itemList == NULL)
     return NULL;
 struct hacTree *root = NULL;
 int itemCount = slCount(itemList);
 int pairCount = 0;
 struct hacTree *leafPairs = pairUpItems(itemList, itemCount, &pairCount, localMem,
 					distF, mergeF, cmpF, extraData);
 struct hacTree *heapHead = leafPairs;
 int heapLength = pairCount;
 while (heapLength > 0)
     {
     // Scan heap for node with lowest childDistance; swap that node w/head
     int i;
     int bestIx = 0;
     double minScore = heapHead[0].childDistance;
     for (i=1;  i < heapLength;  i++)
 	if (heapHead[i].childDistance < minScore)
 	    {
 	    minScore = heapHead[i].childDistance;
 	    bestIx = i;
 	    }
     if (bestIx != 0)
 	swapBytes((char *)&(heapHead[0]), (char *)&(heapHead[bestIx]), sizeof(struct hacTree));
     // Pop the best (lowest-distance) node from heapHead, make it root (for now).
     root = heapHead;
     heapHead = &(heapHead[1]);
     heapLength--;
     // Where root->left is found in the heap, replace it with root.
     // Where root->right is found, drop that node so it doesn't become
     // a duplicate of the replacement cases.
     for (i=0;  i < heapLength;  i++)
 	{
 	struct hacTree *node = &(heapHead[i]);
 	if (node->left == root->left)
 	    initNode(node, root, node->right, distF, mergeF, extraData);
 	else if (node->right == root->left)
 	    initNode(node, root, node->left, distF, mergeF, extraData);
 	else if (node->left == root->right || node->right == root->right)
 	    {
 	    if (i < heapLength-1)
 		memcpy(node, &(heapHead[i+1]), (heapLength-i-1)*sizeof(struct hacTree));
 	    heapLength--;
 	    i--;
 	    }
 	}
     // root now has a stable address, unlike nodes still in the heap, so set parents here:
     if (root->left != NULL)
 	root->left->parent = root;
     if (root->right != NULL)
 	root->right->parent = root;
     }
 // This shouldn't be necessary as long as initNode leaves parent pointers alone,
 // but just in case that changes:
 root->parent = NULL;
 return root;
 }