820ebcf85a344a03cf2279b6ceee42a25514f4a3
angie
  Mon May 23 09:41:50 2011 -0700
Feature #3711 (VCF haplotype clustering): User can select which variantis used as the center (for center-weighted clustering) by clicking on a
link in its details page.

diff --git src/hg/hgTracks/vcfTrack.c src/hg/hgTracks/vcfTrack.c
index 036741b..420ade8 100644
--- src/hg/hgTracks/vcfTrack.c
+++ src/hg/hgTracks/vcfTrack.c
@@ -1,560 +1,590 @@
 /* vcfTrack -- handlers for Variant Call Format data. */
 
 #include "common.h"
 #include "bigWarn.h"
 #include "dystring.h"
 #include "errCatch.h"
 #include "hacTree.h"
 #include "hdb.h"
 #include "hgTracks.h"
 #include "pgSnp.h"
 #include "trashDir.h"
 #include "vcf.h"
 #if (defined USE_TABIX && defined KNETFILE_HOOKS)
 #include "knetUdc.h"
 #include "udc.h"
 #endif//def USE_TABIX && KNETFILE_HOOKS
 
 #ifdef USE_TABIX
 
 //#*** TODO: use trackDb/cart setting or something
 static boolean doHapClusterDisplay = TRUE;
 static boolean colorHapByRefAlt = TRUE;
 
 static struct pgSnp *vcfFileToPgSnp(struct vcfFile *vcff)
 /* Convert vcff's records to pgSnp; don't free vcff until you're done with pgSnp
  * because it contains pointers into vcff's records' chrom. */
 {
 struct pgSnp *pgsList = NULL;
 struct vcfRecord *rec;
 for (rec = vcff->records;  rec != NULL;  rec = rec->next)
     {
     struct pgSnp *pgs = pgSnpFromVcfRecord(rec);
     slAddHead(&pgsList, pgs);
     }
 slReverse(&pgsList);
 return pgsList;
 }
 
 
 // Center-weighted alpha clustering of haplotypes -- see Redmine #3711, #2823 note 7
 // It might be nice to use an allele-frequency representation here instead of [ACGTN] strings
 // with "N" for missing info or differences, but keep it simple.
 
 struct cwaExtraData
 /* Helper data for hacTree clustering of haplotypes by center-weighted alpha distance */
     {
     int center;    // index from which each point's contribution to distance is to be weighted
     int len;       // total length of haplotype strings
     double alpha;  // weighting factor for distance from center
     struct lm *localMem;
     };
 
 // This is the representation of a cluster of up to 65,535 haplotypes of equal length,
 // where each variant's alleles are specified as 0 (reference) or 1 (alternate)
 // [or possibly 2 for second alternate, but those are rare so I'll ignore them].
 // When an individual is heterozygous and unphased for some variant, we need to
 // account for missing data.
 struct hapCluster
 {
     struct hapCluster *next;   // hacTree wants slList of items
     unsigned short *refCounts; // per-variant count of reference alleles observed
     unsigned short *unkCounts; // per-variant count of unknown (or unphased het) alleles
     unsigned short leafCount;  // number of leaves under this node (or 1 if leaf)
     unsigned short gtHapIx;    // if leaf, (genotype index << 1) + hapIx (0 or 1 for diploid)
 };
 
 INLINE boolean isRef(const struct hapCluster *c, int varIx)
 // Return TRUE if the leaves of cluster have at least as many reference alleles
 // as alternate alleles for variant varIx.
 {
 unsigned short altCount = c->leafCount - c->refCounts[varIx] - c->unkCounts[varIx];
 return (c->refCounts[varIx] >= altCount);
 }
 
 INLINE boolean hasUnk(const struct hapCluster *c, int varIx)
 // Return TRUE if at least one haplotype in this cluster has an unknown/unphased value at varIx.
 {
 return (c->unkCounts[varIx] > 0);
 }
 
 static double cwaDistance(const struct slList *item1, const struct slList *item2, void *extraData)
 /* Center-weighted alpha sequence distance function for hacTree clustering of haplotype seqs */
 // This is inner-loop so I am not doing defensive checks.  Caller must ensure:
 // 1. kids's sequences' lengths are both equal to helper->len
 // 2. 0 <= helper->center <= len
 // 3. 0.0 < helper->alpha <= 1.0
 {
 const struct hapCluster *kid1 = (const struct hapCluster *)item1;
 const struct hapCluster *kid2 = (const struct hapCluster *)item2;
 struct cwaExtraData *helper = extraData;
 double distance = 0;
 double weight = 1; // start at center: alpha to the 0th power
 int i;
 for (i=helper->center;  i >= 0;  i--)
     {
     if (isRef(kid1, i) != isRef(kid2, i))
 	distance += weight;
     else if (hasUnk(kid1, i) != hasUnk(kid2, i))
 	distance += weight/2;
     weight *= helper->alpha;
     }
 weight = helper->alpha; // start at center+1: alpha to the 1st power
 for (i=helper->center+1;  i < helper->len;  i++)
     {
     if (isRef(kid1, i) != isRef(kid2, i))
 	distance += weight;
     weight *= helper->alpha;
     }
 return distance;
 }
 
 static struct hapCluster *lmHapCluster(struct cwaExtraData *helper)
 /* Use localMem to allocate a new cluster of the given len. */
 {
 struct hapCluster *c = lmAlloc(helper->localMem, sizeof(struct hapCluster));
 c->refCounts = lmAlloc(helper->localMem, helper->len * sizeof(unsigned short));
 c->unkCounts = lmAlloc(helper->localMem, helper->len * sizeof(unsigned short));
 return c;
 }
 
 static struct slList *cwaMerge(const struct slList *item1, const struct slList *item2,
 			       void *extraData)
 /* Make a consensus haplotype from two input haplotypes, for hacTree clustering by
  * center-weighted alpha distance. */
 // This is inner-loop so I am not doing defensive checks.  Caller must ensure that
 // kids's sequences' lengths are both equal to helper->len.
 {
 const struct hapCluster *kid1 = (const struct hapCluster *)item1;
 const struct hapCluster *kid2 = (const struct hapCluster *)item2;
 struct cwaExtraData *helper = extraData;
 struct hapCluster *consensus = lmHapCluster(helper);
 consensus->leafCount = kid1->leafCount + kid2->leafCount;
 consensus->gtHapIx = kid1->gtHapIx;
 int i;
 for (i=0;  i < helper->len;  i++)
     {
     consensus->refCounts[i] = kid1->refCounts[i] + kid2->refCounts[i];
     consensus->unkCounts[i] = kid1->unkCounts[i] + kid2->unkCounts[i];
     }
 return (struct slList *)consensus;
 }
 
 INLINE void hapClusterToString(const struct hapCluster *c, struct dyString *dy, int len)
 /* Write a text representation of hapCluster's alleles into dy.  */
 {
 dyStringClear(dy);
 int i;
 for (i=0;  i < len;  i++)
     dyStringAppendC(dy, (isRef(c, i) ? '0': '1'));
 }
 
 static int cwaCmp(const struct slList *item1, const struct slList *item2, void *extraData)
 /* Convert hapCluster to allele strings for easy comparison by strcmp. */
 {
 const struct hapCluster *c1 = (const struct hapCluster *)item1;
 const struct hapCluster *c2 = (const struct hapCluster *)item2;
 struct cwaExtraData *helper = extraData;
 static struct dyString *dy1 = NULL, *dy2 = NULL;
 if (dy1 == NULL)
     {
     dy1 = dyStringNew(0);
     dy2 = dyStringNew(0);
     }
 hapClusterToString(c1, dy1, helper->len);
 hapClusterToString(c2, dy2, helper->len);
 return strcmp(dy1->string, dy2->string);
 }
 
 void rSetGtHapOrder(struct hacTree *ht, unsigned short *gtHapOrder, unsigned short *retGtHapEnd)
 /* Traverse hacTree and build an ordered array of genotype + haplotype indices. */
 {
 if (ht->left == NULL && ht->right == NULL)
     {
     struct hapCluster *c = (struct hapCluster *)ht->itemOrCluster;
     gtHapOrder[(*retGtHapEnd)++] = c->gtHapIx;
     }
 else if (ht->left == NULL)
     rSetGtHapOrder(ht->right, gtHapOrder, retGtHapEnd);
 else if (ht->right == NULL)
     rSetGtHapOrder(ht->left, gtHapOrder, retGtHapEnd);
 else
     {
     struct hapCluster *cL = (struct hapCluster *)ht->left->itemOrCluster;
     struct hapCluster *cR = (struct hapCluster *)ht->right->itemOrCluster;
     if (cL->leafCount >= cR->leafCount)
 	{
 	rSetGtHapOrder(ht->left, gtHapOrder, retGtHapEnd);
 	rSetGtHapOrder(ht->right, gtHapOrder, retGtHapEnd);
 	}
     else
 	{
 	rSetGtHapOrder(ht->right, gtHapOrder, retGtHapEnd);
 	rSetGtHapOrder(ht->left, gtHapOrder, retGtHapEnd);
 	}
     }
 }
 
 static unsigned short *clusterChroms(const struct vcfFile *vcff, int centerIx,
 				     unsigned short *retGtHapEnd)
 /* Given a bunch of VCF records with phased genotypes, build up one haplotype string
  * per chromosome that is the sequence of alleles in all variants (simplified to one base
  * per variant).  Each individual/sample will have two haplotype strings (unless haploid
  * like Y or male X).  Independently cluster the haplotype strings using hacTree with the 
  * center-weighted alpha functions above. Return an array of genotype+haplotype indices
  * in the order determined by the hacTree, and set retGtHapEnd to its length/end. */
 {
 int len = slCount(vcff->records);
 // Should alpha depend on len?  Should the penalty drop off with distance?  Seems like
 // straight-up exponential will cause the signal to drop to nothing pretty quickly...
 double alpha = 0.5;
 struct lm *lm = lmInit(0);
 struct cwaExtraData helper = { centerIx, len, alpha, lm };
 int ploidy = 2; // Assuming diploid genomes here, no XXY, tetraploid etc.
 int gtCount = vcff->genotypeCount;
 // Make an slList of hapClusters, but allocate in a big block so I can use
 // array indexing.
 struct hapCluster **hapArray = lmAlloc(lm, sizeof(struct hapCluster *) * gtCount * ploidy);
 int i;
 for (i=0;  i < ploidy * gtCount;  i++)
     {
     hapArray[i] = lmHapCluster(&helper);
     if (i > 0)
 	hapArray[i-1]->next = hapArray[i];
     }
 boolean haveHaploid = FALSE;
 int varIx;
 struct vcfRecord *rec;
 for (varIx = 0, rec = vcff->records;  rec != NULL;  varIx++, rec = rec->next)
     {
     vcfParseGenotypes(rec);
     int gtIx;
     for (gtIx=0;  gtIx < gtCount;  gtIx++)
 	{
 	struct vcfGenotype *gt = &(rec->genotypes[gtIx]);
 	struct hapCluster *c1 = hapArray[gtIx];
 	struct hapCluster *c2 = hapArray[gtCount + gtIx]; // hardwired ploidy=2
 	if (gt->isPhased || gt->isHaploid || (gt->hapIxA == gt->hapIxB))
 	    {
 	    // first chromosome:
 	    c1->leafCount = 1;
 	    c1->gtHapIx = gtIx << 1;
 	    if (gt->hapIxA == 0)
 		c1->refCounts[varIx] = 1;
 	    if (gt->isHaploid)
 		haveHaploid = TRUE;
 	    else
 		{
 		c2->leafCount = 1;
 		c2->gtHapIx = (gtIx << 1) | 1;
 		if (gt->hapIxB == 0)
 		    c2->refCounts[varIx] = 1;
 		}
 	    }
 	else
 	    {
 	    // Unphased heterozygote, don't use haplotype info for clustering
 	    c1->leafCount = c2->leafCount = 1;
 	    c1->gtHapIx = gtIx << 1;
 	    c2->gtHapIx = (gtIx << 1) | 1;
 	    c1->unkCounts[varIx] = c2->unkCounts[varIx] = 1;
 	    }
 	}
     if (haveHaploid)
 	{
 	// Some array items will have an empty cluster for missing hap2 --
 	// trim those from the linked list.
 	struct hapCluster *c = hapArray[0];
 	while (c != NULL && c->next != NULL)
 	    {
 	    if (c->next->leafCount == 0)
 		c->next = c->next->next;
 	    c = c->next;
 	    }
 	}
     }
 struct hacTree *ht = hacTreeFromItems((struct slList *)(hapArray[0]), lm,
 				      cwaDistance, cwaMerge, cwaCmp, &helper);
 unsigned short *gtHapOrder = needMem(vcff->genotypeCount * 2 * sizeof(unsigned short));
 rSetGtHapOrder(ht, gtHapOrder, retGtHapEnd);
 return gtHapOrder;
 }
 
 INLINE char *hapIxToAllele(int hapIx, char *refAllele, char *altAlleles[])
 /* Look up allele by index into reference allele and alternate allele(s). */
 {
 return (hapIx == 0) ? refAllele : altAlleles[hapIx-1];
 }
 
 INLINE Color colorFromGt(struct vcfGenotype *gt, int ploidIx, char *refAllele,
 			 char *altAlleles[], int altCount, boolean grayUnphasedHet)
 /* Color allele by base. */
 {
 int hapIx = ploidIx ? gt->hapIxB : gt->hapIxA;
 char *allele = hapIxToAllele(hapIx, refAllele, altAlleles);
 if (gt->isHaploid && hapIx > 0)
     return shadesOfGray[5];
 if (grayUnphasedHet && !gt->isPhased && gt->hapIxA != gt->hapIxB)
     return shadesOfGray[5];
 // Copying pgSnp color scheme here, using first base of allele which is not ideal for multibase
 // but allows us to simplify it to 5 colors:
 else if (allele[0] == 'A')
     return MG_RED;
 else if (allele[0] == 'C')
     return MG_BLUE;
 else if (allele[0] == 'G')
     return darkGreenColor;
 else if (allele[0] == 'T')
     return MG_MAGENTA;
 else
     return shadesOfGray[5];
 }
 
 INLINE Color colorFromRefAlt(struct vcfGenotype *gt, int hapIx, boolean grayUnphasedHet)
 /* Color allele red for alternate allele, blue for reference allele -- 
  * except for special center variant, make it yellow/green for contrast. */
 {
 if (grayUnphasedHet && !gt->isPhased && gt->hapIxA != gt->hapIxB)
     return shadesOfGray[5];
 int alIx = hapIx ? gt->hapIxB : gt->hapIxA;
 return alIx ? MG_RED : MG_BLUE;
 }
 
 
 INLINE int drawOneHap(struct vcfGenotype *gt, int hapIx,
 		      char *ref, char *altAlleles[], int altCount,
 		      struct hvGfx *hvg, int x1, int y, int w, int itemHeight, int lineHeight)
 /* Draw a base-colored box for genotype[hapIx].  Return the new y offset. */
 {
 Color color = colorHapByRefAlt ? colorFromRefAlt(gt, hapIx, TRUE) :
 				 colorFromGt(gt, hapIx, ref, altAlleles, altCount, TRUE);
-if (w == 1)
-    {
-    x1--;
-    w = 3;
-    }
 hvGfxBox(hvg, x1, y, w, itemHeight+1, color);
 y += itemHeight+1;
 return y;
 }
 
 INLINE char *gtSummaryString(struct vcfRecord *rec, char **altAlleles, int altCount)
 // Make pgSnp-like mouseover text, but with genotype counts instead of allele counts.
 // NOTE 1: Returned string is statically allocated, don't free it!
 // NOTE 2: if revCmplDisp is set, this reverse-complements rec->ref and altAlleles!
 {
 static struct dyString *dy = NULL;
 if (dy == NULL)
     dy = dyStringNew(0);
 dyStringClear(dy);
 const struct vcfFile *vcff = rec->file;
 int gtRefRefCount = 0, gtRefAltCount = 0, gtAltAltCount = 0, gtOtherCount = 0;
 int i;
 for (i=0;  i < vcff->genotypeCount;  i++)
     {
     struct vcfGenotype *gt = &(rec->genotypes[i]);
     if (gt->hapIxA == 0 && gt->hapIxB == 0)
 	gtRefRefCount++;
     else if (gt->hapIxA == 1 && gt->hapIxB == 1)
 	gtAltAltCount++;
     else if ((gt->hapIxA == 0 && gt->hapIxB == 1) || (gt->hapIxA == 1 && gt->hapIxB == 0))
 	gtRefAltCount++;
     else
 	gtOtherCount++;
     }
 if (revCmplDisp)
     {
     reverseComplement(rec->ref, strlen(rec->ref));
     for (i=0;  i < altCount;  i++)
 	reverseComplement(altAlleles[i], strlen(altAlleles[i]));
     }
 
 dyStringPrintf(dy, "%s/%s:%d %s/%s:%d %s/%s:%d", rec->ref, rec->ref, gtRefRefCount,
 	       rec->ref, altAlleles[0], gtRefAltCount,
 	       altAlleles[0], altAlleles[0], gtAltAltCount);
 if (gtOtherCount > 0)
     dyStringPrintf(dy, " other:%d", gtOtherCount);
 return dy->string;
 }
 
 static void drawOneRec(struct vcfRecord *rec, unsigned short *gtHapOrder, int gtHapEnd,
 		       struct track *tg, struct hvGfx *hvg, int xOff, int yOff, int width)
 /* Draw a stack of genotype bars for this record */
 {
 static struct dyString *tmp = NULL;
 if (tmp == NULL)
     tmp = dyStringNew(0);
 char *altAlleles[256];
 int altCount;
 const int lineHeight = tg->lineHeight;
 const int itemHeight = tg->heightPer;
 const double scale = scaleForPixels(width);
 int x1 = round((double)(rec->chromStart-winStart)*scale) + xOff;
 int x2 = round((double)(rec->chromEnd-winStart)*scale) + xOff;
 int w = x2-x1;
-if (w < 1)
-    w = 1;
+if (w <= 1)
+    {
+    x1--;
+    w = 3;
+    }
 int y = yOff;
 dyStringClear(tmp);
 dyStringAppend(tmp, rec->alt);
 altCount = chopCommas(tmp->string, altAlleles);
 int gtHapOrderIx;
 for (gtHapOrderIx = 0;  gtHapOrderIx < gtHapEnd;  gtHapOrderIx++)
     {
     int gtHapIx = gtHapOrder[gtHapOrderIx];
     int hapIx = gtHapIx & 1;
     int gtIx = gtHapIx >>1;
     struct vcfGenotype *gt = &(rec->genotypes[gtIx]);
     y = drawOneHap(gt, hapIx, rec->ref, altAlleles, altCount,
 		   hvg, x1, y, w, itemHeight, lineHeight);
     }
 mapBoxHgcOrHgGene(hvg, rec->chromStart, rec->chromEnd, x1, yOff, w, tg->height, tg->track,
 		  rec->name, gtSummaryString(rec, altAlleles, altCount),
 		  NULL, TRUE, NULL);
 }
 
+static int getCenterVariantIx(struct track *tg, int seqStart, int seqEnd,
+			      struct vcfRecord *records)
+// If the user hasn't specified a local variant/position to use as center,
+// just use the median variant in window.
+{
+int defaultIx = (slCount(records)-1) / 2;
+char cartVar[512];
+safef(cartVar, sizeof(cartVar), "%s.centerVariantPos", tg->tdb->track);
+char *centerPos = cartOptionalString(cart, cartVar);
+if (centerPos != NULL)
+    {
+    char *words[3];
+    int wordCount = chopByChar(cloneString(centerPos), ':', words, sizeof(words));
+    if (wordCount != 2)
+	errAbort("Cart variable %s format error: expected 'chrom:pos', got %s",
+		 cartVar, centerPos);
+    if (sameString(chromName, words[0]))
+	{
+	int pos = sqlUnsigned(words[1]);
+	int winSize = seqEnd - seqStart;
+	if (pos > (seqStart - winSize) && pos < (seqEnd + winSize))
+	    {
+	    int i;
+	    struct vcfRecord *rec;
+	    for (rec = records, i = 0;  rec != NULL;  rec = rec->next, i++)
+		if (rec->chromStart >= pos)
+		    return i;
+	    return i-1;
+	    }
+	}
+    }
+return defaultIx;
+}
+
 static void vcfHapClusterDraw(struct track *tg, int seqStart, int seqEnd,
 			      struct hvGfx *hvg, int xOff, int yOff, int width,
 			      MgFont *font, Color color, enum trackVisibility vis)
 /* Split samples' chromosomes (haplotypes), cluster them by center-weighted
  * alpha similarity, and draw in the order determined by clustering. */
 {
 const struct vcfFile *vcff = tg->extraUiData;
 if (vcff->records == NULL)
     return;
 unsigned short gtHapEnd = 0;
-// Use the median variant in the window as the center; would be even nicer to allow
-// the user to choose a variant (or position) to use as center:
-int ix, centerIx = (slCount(vcff->records)-1) / 2;
+int ix, centerIx = getCenterVariantIx(tg, seqStart, seqEnd, vcff->records);
 unsigned short *gtHapOrder = clusterChroms(vcff, centerIx, &gtHapEnd);
 struct vcfRecord *rec, *centerRec = NULL;
 for (rec = vcff->records, ix=0;  rec != NULL;  rec = rec->next, ix++)
     {
     drawOneRec(rec, gtHapOrder, gtHapEnd, tg, hvg, xOff, yOff, width);
     if (ix == centerIx)
 	centerRec = rec;
     }
 // Draw the center rec on top, outlined with black lines, to make sure it is very visible:
 drawOneRec(centerRec, gtHapOrder, gtHapEnd, tg, hvg, xOff, yOff, width);
 const double scale = scaleForPixels(width);
 int x1 = round((double)(centerRec->chromStart-winStart)*scale) + xOff;
 int x2 = round((double)(centerRec->chromEnd-winStart)*scale) + xOff;
 int yBot = yOff + tg->height - 2;
 hvGfxBox(hvg, x1-4, yOff, 3, tg->height, color);
 hvGfxBox(hvg, x2+2, yOff, 3, tg->height, color);
 hvGfxLine(hvg, x1-2, yOff, x2+2, yOff, MG_BLACK);
 hvGfxLine(hvg, x1-2, yBot, x2+2, yBot, MG_BLACK);
 }
 
 static int vcfHapClusterTotalHeight(struct track *tg, enum trackVisibility vis)
 /* Return height of haplotype graph (2 * #samples * lineHeight);
  * 2 because we're assuming diploid genomes here, no XXY, tetraploid etc. */
 {
 // Should we make it single-height when on chrY?
 const struct vcfFile *vcff = tg->extraUiData;
 if (vcff->records == NULL)
     return 0;
 int ploidy = 2;
 tg->height = ploidy * vcff->genotypeCount * tg->lineHeight;
 return tg->height;
 }
 
 static char *vcfHapClusterTrackName(struct track *tg, void *item)
 /* If someone asks for itemName/mapItemName, just send name of track like wiggle. */
 {
 return tg->track;
 }
 
 static void vcfHapClusterOverloadMethods(struct track *tg, struct vcfFile *vcff)
 /* If we confirm at load time that we can draw a haplotype graph, use
  * this to overwrite the methods for the rest of execution: */
 {
 tg->heightPer = (tg->visibility == tvSquish) ? (tl.fontHeight/4) : (tl.fontHeight / 2);
 tg->lineHeight = tg->heightPer + 1;
 tg->drawItems = vcfHapClusterDraw;
 tg->totalHeight = vcfHapClusterTotalHeight;
 tg->itemHeight = tgFixedItemHeight;
 tg->itemName = vcfHapClusterTrackName;
 tg->mapItemName = vcfHapClusterTrackName;
 tg->itemStart = tgItemNoStart;
 tg->itemEnd = tgItemNoEnd;
 tg->mapsSelf = TRUE;
 tg->extraUiData = vcff;
 }
 
 static void vcfTabixLoadItems(struct track *tg)
 /* Load items in window from VCF file using its tabix index file. */
 {
 struct sqlConnection *conn = hAllocConnTrack(database, tg->tdb);
 // TODO: may need to handle per-chrom files like bam, maybe fold bamFileNameFromTable into this::
 char *fileOrUrl = bbiNameFromSettingOrTable(tg->tdb, conn, tg->table);
 hFreeConn(&conn);
 int vcfMaxErr = 100;
 struct vcfFile *vcff = NULL;
 /* protect against temporary network error */
 struct errCatch *errCatch = errCatchNew();
 if (errCatchStart(errCatch))
     {
     vcff = vcfTabixFileMayOpen(fileOrUrl, chromName, winStart, winEnd, vcfMaxErr);
     }
 errCatchEnd(errCatch);
 if (errCatch->gotError)
     {
     if (isNotEmpty(errCatch->message->string))
 	tg->networkErrMsg = cloneString(errCatch->message->string);
     tg->drawItems = bigDrawWarning;
     tg->totalHeight = bigWarnTotalHeight;
     }
 errCatchFree(&errCatch);
 if (vcff != NULL)
     {
     if (doHapClusterDisplay && vcff->genotypeCount > 0 && vcff->genotypeCount < 3000 &&
 	(tg->visibility == tvPack || tg->visibility == tvSquish))
 	vcfHapClusterOverloadMethods(tg, vcff);
     else
 	{
 	tg->items = vcfFileToPgSnp(vcff);
 	// pgSnp bases coloring/display decision on count of items:
 	tg->customInt = slCount(tg->items);
 	}
     // Don't vcfFileFree here -- we are using its string pointers!
     }
 }
 
 void vcfTabixMethods(struct track *track)
 /* Methods for VCF + tabix files. */
 {
 pgSnpMethods(track);
 track->loadItems = vcfTabixLoadItems;
 track->canPack = TRUE;
 }
 
 #else // no USE_TABIX:
 
 // If code was not built with USE_TABIX=1, but there are vcfTabix tracks, display a message
 // in place of the tracks (instead of annoying "No track handler" warning messages).
 
 static void drawUseVcfTabixWarning(struct track *tg, int seqStart, int seqEnd, struct hvGfx *hvg,
 				   int xOff, int yOff, int width, MgFont *font, Color color,
 				   enum trackVisibility vis)
 /* Draw a message saying that the code needs to be built with USE_TABIX=1. */
 {
 char message[512];
 safef(message, sizeof(message),
       "Get tabix from samtools.sourceforge.net and recompile kent/src with USE_TABIX=1");
 Color yellow = hvGfxFindRgb(hvg, &undefinedYellowColor);
 hvGfxBox(hvg, xOff, yOff, width, tg->heightPer, yellow);
 hvGfxTextCentered(hvg, xOff, yOff, width, tg->heightPer, MG_BLACK, font, message);
 }
 
 void vcfTabixMethods(struct track *track)
 /* Methods for VCF alignment files, in absence of tabix lib. */
 {
 #if (defined USE_TABIX && defined KNETFILE_HOOKS)
 knetUdcInstall();
 #endif//def USE_TABIX && KNETFILE_HOOKS
 messageLineMethods(track);
 track->drawItems = drawUseVcfTabixWarning;
 }
 
 #endif // no USE_TABIX