5a3cd681e0bebecf7acff2888b4aee6f2b5a0904
braney
  Fri Nov 8 11:08:32 2013 -0800
fix bug when the sequence is null from HAL snakes
diff --git src/hg/hgTracks/snakeTrack.c src/hg/hgTracks/snakeTrack.c
index ed7ac8d..452790e 100644
--- src/hg/hgTracks/snakeTrack.c
+++ src/hg/hgTracks/snakeTrack.c
@@ -1,1530 +1,1532 @@
 #ifdef USE_HAL
 /* snakeTrack - stuff to load and display snake type tracks in browser.  */
 
 #include "common.h"
 #include "hash.h"
 #include "localmem.h"
 #include "linefile.h"
 #include "jksql.h"
 #include "hdb.h"
 #include "hgTracks.h"
 #include "chainBlock.h"
 #include "chainLink.h"
 #include "chainDb.h"
 #include "chainCart.h"
 #include "errCatch.h"
 #include "twoBit.h"
 #include "bigWarn.h"
 #include <pthread.h>
 #include "trackHub.h"
 #include "limits.h"
 #include "snakeUi.h"
 
 #include "halBlockViz.h"
 
 // this is the number of pixels used by the target self-align bar
 #define DUP_LINE_HEIGHT	4
 
 struct snakeFeature
     {
     struct snakeFeature *next;
     int start, end;			/* Start/end in browser coordinates. */
     int qStart, qEnd;			/* query start/end */
     int level;				/* level in snake */
     int orientation;			/* strand... -1 is '-', 1 is '+' */
     boolean drawn;			/* did we draw this feature? */
     char *qSequence;			/* may have sequence, or NULL */
     char *tSequence;			/* may have sequence, or NULL */
     char *qName;			/* chrom name on other species */
     };
 
 static int snakeFeatureCmpTStart(const void *va, const void *vb)
 /* sort by start position on the target sequence */
 {
 const struct snakeFeature *a = *((struct snakeFeature **)va);
 const struct snakeFeature *b = *((struct snakeFeature **)vb);
 int diff = a->start - b->start;
 
 return diff;
 }
 
 static int snakeFeatureCmpQStart(const void *va, const void *vb)
 /* sort by start position on the query sequence */
 {
 const struct snakeFeature *a = *((struct snakeFeature **)va);
 const struct snakeFeature *b = *((struct snakeFeature **)vb);
 int diff = a->qStart - b->qStart;
 
 if (diff == 0)
     {
     diff = a->start - b->start;
     }
 
 return diff;
 }
 
 
 // static machinery to calculate full and pack snake
 
 struct level
 {
 boolean init;		/* has this level been initialized */
 int orientation;	/* strand.. see above */
 unsigned long edge;	/* the leading edge of this level */
 int adjustLevel;	/* used to compress out the unused levels */
 boolean hasBlock;	/* are there any blocks in this level */
 };
 
 static struct level Levels[10000]; /* for packing the snake, not re-entrant! */
 static int maxLevel = 0;     	     /* deepest level */	
 
 /* blocks that make it through the min size filter */
 static struct snakeFeature *newList = NULL;   
 
 static void clearLevels()
 /* clear out the data structure that we use to calculate full snakes */
 {
 int ii;
 
 for(ii=0; ii < sizeof(Levels) / sizeof(Levels[0]); ii++)
     Levels[ii].init = FALSE;
 maxLevel = 0;
 }
 
 static void calcFullSnakeHelper(struct snakeFeature *list, int level)
 // calculate a full snake
 // updates global newList with unsorted blocks that pass the min
 // size filter.
 {
 struct snakeFeature *cb = list;
 struct snakeFeature *proposedList = NULL;
 
 if (level > maxLevel)
     maxLevel = level;
 if (level > ArraySize(Levels))
     errAbort("too many levels");
 
 if (Levels[level].init == FALSE)
     {
     // initialize the level if this is the first time we've seen it
     Levels[level].init = TRUE;
     Levels[level].orientation = list->orientation;
     if (list->orientation == -1)
 	Levels[level].edge = LONG_MAX; // bigger than the biggest chrom
     else
 	Levels[level].edge = 0;
     }
 
 // now we step through the blocks and assign them to levels
 struct snakeFeature *next;
 struct snakeFeature *insertHead = NULL;
 for(; cb; cb = next)
     {
     // we're going to add this block to a different list 
     // so keep track of the next pointer
     next = cb->next;
 
     // if this block can't fit on this level add to the insert
     // list and move on to the next block
     if ((Levels[level].orientation != cb->orientation) ||
 	((cb->orientation == 1) && (Levels[level].edge > cb->start)) ||
 	((cb->orientation == -1) && (Levels[level].edge < cb->end)))
 	{
 	// add this to the list of an insert
 	slAddHead(&insertHead, cb);
 	continue;
 	}
 
     // the current block will fit on this level
     // go ahead and deal with the blocks that wouldn't 
     if (insertHead)
 	{
 	// we had an insert, go ahead and calculate where that goes
 	slReverse(&insertHead);
 	calcFullSnakeHelper(insertHead, level + 1);
 	insertHead = NULL;
 	}
 
     // assign the current block to this level
     cb->level = level;
 
     if (cb->orientation == 1)
 	Levels[level].edge = cb->end;
     else
 	Levels[level].edge = cb->start;
 
     // add this block to the list of proposed blocks for this level
     slAddHead(&proposedList, cb);
     }
 
 // we're at the end of the list.  Deal with any blocks
 // that didn't fit on this level
 if (insertHead)
     {
     slReverse(&insertHead);
     int nextLevel = level + 1;
     calcFullSnakeHelper(insertHead, nextLevel);
     insertHead = NULL;
     }
 
 // do we have any proposed blocks
 if (proposedList == NULL) 
     return;
 
 // we parsed all the blocks in the list to see if they fit in our level
 // now let's see if the list of blocks for this level is big enough
 // to actually add
 
 struct snakeFeature *temp;
 double scale = scaleForWindow(insideWidth, winStart, winEnd);
 int start, end;
 
 // order the blocks so lowest start position is first
 if (Levels[level].orientation == 1)
     slReverse(&proposedList);
 
 start=proposedList->start;
 for(temp=proposedList; temp->next; temp = temp->next)
     ;
 end=temp->end;
 
 // calculate how big the string of blocks is in screen coordinates
 double apparentSize = scale * (end - start);
 
 if (apparentSize < 0)
     errAbort("size of a list of blocks should not be less than zero");
 
 // check to see if the apparent size is big enough
 if (apparentSize < 1)
     return;
 
 // transfer proposedList to new block list
 for(temp=proposedList; temp; temp = next)
     {
     next = temp->next;
     temp->next = NULL;
     slAddHead(&newList, temp);
     }
 }
 
 struct snakeInfo
 {
 int maxLevel;
 } snakeInfo;
 
 static void calcFullSnake(struct track *tg, void *item)
 {
 struct linkedFeatures  *lf = (struct linkedFeatures *)item;
 if (lf->components == NULL)
     return;
 
 // we use the codons field to keep track of whether we already
 // calculated the height of this snake
 if (lf->codons == NULL)
     {
     clearLevels();
     struct snakeFeature *sf;
 
     // this will destroy lf->components, and add to newList
     calcFullSnakeHelper((struct snakeFeature *)lf->components, 0);
     lf->components = (struct simpleFeature *)newList;
     newList = NULL;
     slSort(&lf->components, snakeFeatureCmpQStart);
 
     // now we're going to compress the levels that aren't used
     // to do that, we need to see which blocks are on the screen,
     // or connected to something on the screen
     int oldMax = maxLevel;
     clearLevels();
     struct snakeFeature *prev = NULL;
     for(sf=(struct snakeFeature *)lf->components; sf; prev = sf, sf = sf->next)
 	{
 	if (Levels[sf->level].init == FALSE)
 	    {
 	    Levels[sf->level].init = TRUE;
 	    Levels[sf->level].orientation = sf->orientation;
 	    Levels[sf->level].hasBlock = FALSE;
 	    }
 	else
 	    {
 	    if (Levels[sf->level].orientation != sf->orientation)
 		errAbort("found snakeFeature with wrong orientation");
 	    if ((sf->orientation == 1) && (Levels[sf->level].edge > sf->start)) 
 		errAbort("found snakeFeature that violates edge");
 	    if ((sf->orientation == -1) && (Levels[sf->level].edge < sf->end))
 		errAbort("found snakeFeature that violates edge");
 	    }
 	if (sf->orientation == 1)
 	    Levels[sf->level].edge = sf->end;
 	else
 	    Levels[sf->level].edge = sf->start;
 	if (sf->level > maxLevel)
 	    maxLevel = sf->level;
 	if(positiveRangeIntersection(winStart, winEnd, sf->start, sf->end))
 	    {
 	    Levels[sf->level].hasBlock = TRUE;
 	    if (sf->next != NULL)
 		Levels[sf->next->level].hasBlock = TRUE;
 	    if (prev != NULL)
 		Levels[prev->level].hasBlock = TRUE;
 
 	    }
 	}
 
     // now figure out how to remap the blocks
     int ii;
     int count = 0;
     for(ii=0; ii < oldMax + 1; ii++)
 	{
 	Levels[ii].adjustLevel = count;
 	if ((Levels[ii].init) && (Levels[ii].hasBlock))
 	    count++;
 	}
     maxLevel = count - 1;
 
     // remap blocks
     for(sf=(struct snakeFeature *)lf->components; sf; sf = sf->next)
 	sf->level = Levels[sf->level].adjustLevel;
 
     struct snakeInfo *si;
     AllocVar(si);
     si->maxLevel = maxLevel;
     lf->codons = (struct simpleFeature *)si;
     }
 }
 
 static void calcPackSnakeHelper(struct snakeFeature *list, int level)
 // calculate a packed snake
 // updates global newList with unsorted blocks that pass the min
 // size filter.
 {
 struct snakeFeature *cb = list;
 struct snakeFeature *proposedList = NULL;
 
 if (level > maxLevel)
     maxLevel = level;
 if (level > ArraySize(Levels))
     errAbort("too many levels");
 
 if (Levels[level].init == FALSE)
     {
     // initialize the level if this is the first time we've seen it
     Levels[level].init = TRUE;
     Levels[level].edge = 0;
     }
 
 // now we step through the blocks and assign them to levels
 struct snakeFeature *next;
 struct snakeFeature *insertHead = NULL;
 for(; cb; cb = next)
     {
     // we're going to add this block to a different list 
     // so keep track of the next pointer
     next = cb->next;
 
     // if this block can't fit on this level add to the insert
     // list and move on to the next block
     if ( Levels[level].edge > cb->start)
 	{
 	// add this to the list of an insert
 	slAddHead(&insertHead, cb);
 	continue;
 	}
 
     // the current block will fit on this level
     // go ahead and deal with the blocks that wouldn't 
     if (insertHead)
 	{
 	// we had an insert, go ahead and calculate where that goes
 	slReverse(&insertHead);
 	calcPackSnakeHelper(insertHead, level + 1);
 	insertHead = NULL;
 	}
 
     // assign the current block to this level
     cb->level = level;
 
     Levels[level].edge = cb->end;
 
     // add this block to the list of proposed blocks for this level
     slAddHead(&proposedList, cb);
     }
 
 // we're at the end of the list.  Deal with any blocks
 // that didn't fit on this level
 if (insertHead)
     {
     slReverse(&insertHead);
     calcPackSnakeHelper(insertHead,  level + 1);
     insertHead = NULL;
     }
 
 // do we have any proposed blocks
 if (proposedList == NULL) 
     return;
 
 // we parsed all the blocks in the list to see if they fit in our level
 // now let's see if the list of blocks for this level is big enough
 // to actually add
 
 struct snakeFeature *temp;
 double scale = scaleForWindow(insideWidth, winStart, winEnd);
 int start, end;
 
 // order the blocks so lowest start position is first
 slReverse(&proposedList);
 
 start=proposedList->start;
 for(temp=proposedList; temp->next; temp = temp->next)
     ;
 end=temp->end;
 
 // calculate how big the string of blocks is in screen coordinates
 double apparentSize = scale * (end - start);
 
 if (apparentSize < 0)
     errAbort("size of a list of blocks should not be less than zero");
 
 // check to see if the apparent size is big enough
 if (apparentSize < 1)
     return;
 
 // transfer proposedList to new block list
 for(temp=proposedList; temp; temp = next)
     {
     next = temp->next;
     temp->next = NULL;
     slAddHead(&newList, temp);
     }
 }
 
 static void calcPackSnake(struct track *tg, void *item)
 {
 struct linkedFeatures  *lf = (struct linkedFeatures *)item;
 if (lf->components == NULL)
     return;
 
 // we use the codons field to keep track of whether we already
 // calculated the height of this snake
 if (lf->codons == NULL)
     {
     clearLevels();
 
     // this will destroy lf->components, and add to newList
     calcPackSnakeHelper((struct snakeFeature *)lf->components, 0);
     lf->components = (struct simpleFeature *)newList;
     newList = NULL;
     
     //slSort(&lf->components, snakeFeatureCmpQStart);
 
     struct snakeInfo *si;
     AllocVar(si);
     si->maxLevel = maxLevel;
     lf->codons = (struct simpleFeature *)si;
     }
 }
 
 static int snakeItemHeight(struct track *tg, void *item)
 // return height of a single packed snake 
 {
 if ((item == NULL) || (tg->visibility == tvSquish) || (tg->visibility == tvDense)) 
     return 0;
 
 struct linkedFeatures  *lf = (struct linkedFeatures *)item;
 if (lf->components == NULL)
     return 0;
 
 if (tg->visibility == tvFull) 
     calcFullSnake(tg, item);
 else if (tg->visibility == tvPack) 
     calcPackSnake(tg, item);
 
 struct snakeInfo *si = (struct snakeInfo *)lf->codons;
 int lineHeight = tg->lineHeight ;
 int multiplier = 1;
 
 if (tg->visibility == tvFull)
     multiplier = 2;
 return (si->maxLevel + 1) * (multiplier * lineHeight);
 }
 
 static int linkedFeaturesCmpScore(const void *va, const void *vb)
 /* Help sort linkedFeatures by score */
 {
 const struct linkedFeatures *a = *((struct linkedFeatures **)va);
 const struct linkedFeatures *b = *((struct linkedFeatures **)vb);
 if (a->score > b->score)
     return -1;
 else if (a->score < b->score)
     return 1;
 return 0;
 }
 
 static int snakeHeight(struct track *tg, enum trackVisibility vis)
 /* calculate height of all the snakes being displayed */
 {
 if (tg->networkErrMsg != NULL)
     {
     // we had a parallel load failure
     tg->drawItems = bigDrawWarning;
     tg->totalHeight = bigWarnTotalHeight;
     return bigWarnTotalHeight(tg, vis);
     }
 
 if (vis == tvDense)
     return tg->lineHeight;
 
 if (vis == tvSquish)
     return tg->lineHeight/2;
 
 int height = DUP_LINE_HEIGHT; 
 struct slList *item = tg->items;
 
 item = tg->items;
 
 for (item=tg->items;item; item = item->next)
     {
     height += tg->itemHeight(tg, item);
     }
 return height;
 }
 
 static void snakeDraw(struct track *tg, int seqStart, int seqEnd,
         struct hvGfx *hvg, int xOff, int yOff, int width, 
         MgFont *font, Color color, enum trackVisibility vis)
 /* Draw linked features items. */
 {
 struct slList *item;
 int y;
 struct linkedFeatures  *lf;
 double scale = scaleForWindow(width, seqStart, seqEnd);
 int height = snakeHeight(tg, vis);
 
 hvGfxSetClip(hvg, xOff, yOff, width, height);
 
 if ((tg->visibility == tvFull) || (tg->visibility == tvPack))
     {
     // score snakes by how many bases they cover
     for (item = tg->items; item != NULL; item = item->next)
 	{
 	lf = (struct linkedFeatures *)item;
 	struct snakeFeature  *sf;
 
 	lf->score = 0;
 	for (sf =  (struct snakeFeature *)lf->components; sf != NULL;  sf = sf->next)
 	    {
 	    lf->score += sf->end - sf->start;
 	    }
 	}
 
     slSort(&tg->items, linkedFeaturesCmpScore);
     }
 
 y = yOff;
 for (item = tg->items; item != NULL; item = item->next)
     {
     if(tg->itemColor != NULL) 
 	color = tg->itemColor(tg, item, hvg);
     tg->drawItemAt(tg, item, hvg, xOff, y, scale, font, color, vis);
     if (vis == tvFull)
 	y += tg->itemHeight(tg, item);
     } 
 }
 
 //  this is a 16 color palette with every other color being a lighter version of
 //  the color before it
 static int snakePalette2[] =
 {
 0x1f77b4, 0xaec7e8, 0xff7f0e, 0xffbb78, 0x2ca02c, 0x98df8a, 0xd62728, 0xff9896, 0x9467bd, 0xc5b0d5, 0x8c564b, 0xc49c94, 0xe377c2, 0xf7b6d2, 0x7f7f7f, 0xc7c7c7, 0xbcbd22, 0xdbdb8d, 0x17becf, 0x9edae5
 };
 
 static int snakePalette[] =
 {
 0x1f77b4, 0xff7f0e, 0x2ca02c, 0xd62728, 0x9467bd, 0x8c564b, 0xe377c2, 0x7f7f7f, 0xbcbd22, 0x17becf
 };
 
 static Color hashColor(char *name)
 {
 bits32 hashVal = hashString(name);
 unsigned int colorInt = snakePalette2[hashVal % (sizeof(snakePalette2)/sizeof(Color))];
 
 return MAKECOLOR_32(((colorInt >> 16) & 0xff),((colorInt >> 8) & 0xff),((colorInt >> 0) & 0xff));
 }
 
 static void snakeDrawAt(struct track *tg, void *item,
 	struct hvGfx *hvg, int xOff, int y, double scale, 
 	MgFont *font, Color color, enum trackVisibility vis)
 /* Draw a single simple bed item at position. */
 {
 unsigned showSnpWidth = cartOrTdbInt(cart, tg->tdb, 
     SNAKE_SHOW_SNP_WIDTH, SNAKE_DEFAULT_SHOW_SNP_WIDTH);
 struct linkedFeatures  *lf = (struct linkedFeatures *)item;
 
 
 if (tg->visibility == tvFull) 
     calcFullSnake(tg, item);
 else if (tg->visibility == tvPack)
     calcPackSnake(tg, item);
 
 if (lf->components == NULL)
     return;
 
 boolean isHalSnake = lf->isHalSnake;
 
 struct snakeFeature  *sf = (struct snakeFeature *)lf->components, *prevSf = NULL;
 int s = tg->itemStart(tg, item);
 int sClp = (s < winStart) ? winStart : s;
 int x1 = round((sClp - winStart)*scale) + xOff;
 int textX = x1;
 int yOff = y;
 boolean withLabels = (withLeftLabels && (vis == tvFull) && !tg->drawName);
 unsigned   labelColor = MG_BLACK;
 
 // draw the labels
 if (withLabels)
     {
     char *name = tg->itemName(tg, item);
     int nameWidth = mgFontStringWidth(font, name);
     int dotWidth = tl.nWidth/2;
     boolean snapLeft = FALSE;
     boolean drawNameInverted = FALSE;
     textX -= nameWidth + dotWidth;
     snapLeft = (textX < insideX);
     /* Special tweak for expRatio in pack mode: force all labels
      * left to prevent only a subset from being placed right: */
     snapLeft |= (startsWith("expRatio", tg->tdb->type));
 #ifdef IMAGEv2_NO_LEFTLABEL_ON_FULL
     if (theImgBox == NULL && snapLeft)
 #else///ifndef IMAGEv2_NO_LEFTLABEL_ON_FULL
     if (snapLeft)        /* Snap label to the left. */
 #endif ///ndef IMAGEv2_NO_LEFTLABEL_ON_FULL
         {
         textX = leftLabelX;
         assert(hvgSide != NULL);
         hvGfxUnclip(hvgSide);
         hvGfxSetClip(hvgSide, leftLabelX, yOff, insideWidth, tg->height);
         if(drawNameInverted)
             {
             int boxStart = leftLabelX + leftLabelWidth - 2 - nameWidth;
             hvGfxBox(hvgSide, boxStart, y, nameWidth+1, tg->heightPer - 1, color);
             hvGfxTextRight(hvgSide, leftLabelX, y, leftLabelWidth-1, tg->heightPer,
                         MG_WHITE, font, name);
             }
         else
             hvGfxTextRight(hvgSide, leftLabelX, y, leftLabelWidth-1, tg->heightPer,
                         labelColor, font, name);
         hvGfxUnclip(hvgSide);
         hvGfxSetClip(hvgSide, insideX, yOff, insideWidth, tg->height);
         }
     else
         {
         if(drawNameInverted)
             {
             hvGfxBox(hvg, textX - 1, y, nameWidth+1, tg->heightPer-1, color);
             hvGfxTextRight(hvg, textX, y, nameWidth, tg->heightPer, MG_WHITE, font, name);
             }
         else
             hvGfxTextRight(hvg, textX, y, nameWidth, tg->heightPer, labelColor, font, name);
         }
     }
 
 // let's draw some blue bars for the duplications
 struct hal_target_dupe_list_t* dupeList = lf->dupeList;
 
 int count = 0;
 if ((tg->visibility == tvFull) || (tg->visibility == tvPack)) 
     {
     for(; dupeList ; dupeList = dupeList->next, count++)
 	{
 	struct hal_target_range_t *range = dupeList->tRange;
 
 	unsigned int colorInt = snakePalette[count % (sizeof(snakePalette)/sizeof(Color))];
 	Color color = MAKECOLOR_32(((colorInt >> 16) & 0xff),((colorInt >> 8) & 0xff),((colorInt >> 0) & 0xff));
 
 	for(; range; range = range->next)
 	    {
 	    int s = range->tStart;
 	    int e = range->tStart + range->size;
 	    int sClp = (s < winStart) ? winStart : s;
 	    int eClp = (e > winEnd) ? winEnd : e;
 	    int x1 = round((sClp - winStart)*scale) + xOff;
 	    int x2 = round((eClp - winStart)*scale) + xOff;
 	    hvGfxBox(hvg, x1, y , x2-x1, DUP_LINE_HEIGHT - 1 , color);
 	    }
 	}
     y+=DUP_LINE_HEIGHT;
     }
 
 // now we're going to draw the boxes
 
 s = sf->start;
 int lastE = -1;
 int lastS = -1;
 int offY = y;
 int lineHeight = tg->lineHeight ;
 int tStart, tEnd, qStart;
 int  qs, qe;
 int heightPer = tg->heightPer;
 int lastX = -1,lastY = y;
 int lastQEnd = 0;
 int lastLevel = -1;
 int e;
 qe = lastQEnd = 0;
 for (sf =  (struct snakeFeature *)lf->components; sf != NULL; lastQEnd = qe, prevSf = sf, sf = sf->next)
     {
     qs = sf->qStart;
     qe = sf->qEnd;
     if (vis == tvDense)
 	y = offY;
     else if ((vis == tvPack) || (vis == tvSquish))
 	y = offY + (sf->level * 1) * lineHeight;
     else if (vis == tvFull)
 	y = offY + (sf->level * 2) * lineHeight;
     s = sf->start; e = sf->end;
     tEnd = sf->end;
     int osx;
 
     int sx, ex;
     if (!positiveRangeIntersection(winStart, winEnd, s, e))
 	continue;
     osx = sx = round((double)((int)s-winStart)*scale) + xOff;
     ex = round((double)((int)e-winStart)*scale) + xOff;
 
     // color by strand
     static Color darkBlueColor = 0;
     static Color darkRedColor = 0;
     if (darkRedColor == 0)
 	{
 	//the light blue: rgb(149, 204, 252)
 	//the light red: rgb(232, 156, 156)
 	darkRedColor = hvGfxFindColorIx(hvg, 232,156,156);
 	darkBlueColor = hvGfxFindColorIx(hvg, 149,204,252);
 	}
     
     char *colorBy = cartOrTdbString(cart, tg->tdb, 
 	SNAKE_COLOR_BY, SNAKE_DEFAULT_COLOR_BY);
 
     extern Color getChromColor(char *name, struct hvGfx *hvg);
     if (sameString(colorBy, SNAKE_COLOR_BY_STRAND_VALUE))
 	color = (sf->orientation == -1) ? darkRedColor : darkBlueColor;
     else if (sameString(colorBy, SNAKE_COLOR_BY_CHROM_VALUE))
 	color = hashColor(sf->qName);
     else
 	color =  darkBlueColor;
 
     int w = ex - sx;
     if (w == 0) 
 	w = 1;
     assert(w > 0);
     char buffer[1024];
 	
     if (vis == tvFull)
 	safef(buffer, sizeof buffer, "%d-%d",sf->qStart,sf->qEnd);
     else
 	safef(buffer, sizeof buffer, "%s:%d-%d",sf->qName,sf->qStart,sf->qEnd);
     if (sx < insideX)
 	{
 	int olap = insideX - sx;
 	sx = insideX;
 	w -= olap;
 	}
     char qAddress[4096];
     if ((vis == tvFull) || (vis == tvPack) )
 	{
 	safef(qAddress, sizeof qAddress, "qName=%s&qs=%d&qe=%d&qWidth=%d",sf->qName,  qs, qe,  winEnd - winStart);
 	mapBoxHgcOrHgGene(hvg, s, e, sx+1, y, w-2, heightPer, tg->track,
 		    buffer, buffer, NULL, TRUE, qAddress);
 	}
     hvGfxBox(hvg, sx, y, w, heightPer, color);
 
     // now draw the mismatches if we're at high enough resolution 
     if ((winBaseCount < showSnpWidth) && ((vis == tvFull) || (vis == tvPack)))
     {
 	char *twoBitString = trackDbSetting(tg->tdb, "twoBit");
 	static struct twoBitFile *tbf = NULL;
 	static char *lastTwoBitString = NULL;
 	static struct dnaSeq *seq = NULL;
 	static char *lastQName = NULL;
 
 	// sequence for chain snakes is in 2bit files which we cache
 	if (!isHalSnake)
 	    {
 	    if (twoBitString == NULL)
 		twoBitString = "/gbdb/hg19/hg19.2bit";
 
 	    if ((lastTwoBitString == NULL) ||
 		differentString(lastTwoBitString, twoBitString))
 		{
 		if (tbf != NULL)
 		    {
 		    lastQName = NULL;
 		    twoBitClose(&tbf);
 		    }
 		tbf = twoBitOpen(twoBitString);
 		}
 
 	    // we're reading in the whole chrom
 	    if ((lastQName == NULL) || differentString(sf->qName, lastQName))
 		seq = twoBitReadSeqFrag(tbf, sf->qName,  0, 0);
 	    lastQName = sf->qName;
 	    lastTwoBitString = twoBitString;
 	    }
 
 	char *ourDna;
 	if (isHalSnake)
 	    ourDna = sf->qSequence;
 	else
 	    ourDna = &seq->dna[sf->qStart];
 
 	int seqLen = sf->qEnd - sf->qStart;
 	toUpperN(ourDna, seqLen);
 	if (!isHalSnake && (sf->orientation == -1))
 	    reverseComplement(ourDna,seqLen);
 
 	// get the reference sequence
 	char *refDna;
 	if (isHalSnake)
 	    {
 	    refDna = sf->tSequence;
 	    }
 	else
 	    {
 	    struct dnaSeq *extraSeq = hDnaFromSeq(database, chromName, sf->start, sf->end, dnaUpper);
 	    refDna = extraSeq->dna;
 	    }
 	int si = s;
 	char *ptr1 = refDna;
 	char *ptr2 = ourDna;
 	for(; si < e; si++,ptr1++,ptr2++)
 	    {
 	    if (*ptr1 != *ptr2)
 		{
 		int misX1 = round((double)((int)si-winStart)*scale) + xOff;
 		int misX2 = round((double)((int)(si+1)-winStart)*scale) + xOff;
 		int w1 = misX2 - misX1;
 		if (w1 < 1)
 		    w1 = 1;
 
 		// mismatch!
 		hvGfxBox(hvg, misX1, y, w1, heightPer, MG_RED);
 		}
 	    }
 
 	// if we're zoomed to base level, draw sequence of mismatch
 	if (zoomedToBaseLevel)
 	    {
 	    int mysx = round((double)((int)s-winStart)*scale) + xOff;
 	    int myex = round((double)((int)e-winStart)*scale) + xOff;
 	    int myw = myex - mysx;
 	    spreadAlignString(hvg, mysx, y, myw, heightPer, MG_WHITE, font, ourDna,
 		refDna, seqLen, TRUE, FALSE);
 	    }
 
     }
     sf->drawn = TRUE;
     tEnd = e;
     tStart = s;
     qStart = sf->qStart;
     lastY = y;
     lastLevel = sf->level;
     //lastX = x;
     }
 
 if (vis != tvFull)
     return;
 
 // now we're going to draw the lines between the blocks
 
 lastX = -1,lastY = y;
 lastQEnd = 0;
 lastLevel = 0;
 qe = lastQEnd = 0;
 prevSf = NULL;
 for (sf =  (struct snakeFeature *)lf->components; sf != NULL; lastQEnd = qe, prevSf = sf, sf = sf->next)
     {
     int y1, y2;
     int sx, ex;
     qs = sf->qStart;
     qe = sf->qEnd;
     if (lastLevel == sf->level)
 	{
 	y1 = offY + (lastLevel * 2) * lineHeight + lineHeight/2;
 	y2 = offY + (sf->level * 2) * lineHeight + lineHeight/2;
 	}
     else if (lastLevel > sf->level)
 	{
 	y1 = offY + (lastLevel * 2 ) * lineHeight;
 	y2 = offY + (sf->level * 2 + 1) * lineHeight + lineHeight/3;
 	}
     else
 	{
 	y1 = offY + (lastLevel * 2 + 1) * lineHeight - 1;
 	y2 = offY + (sf->level * 2 ) * lineHeight - lineHeight/3;;
 	}
     s = sf->start; e = sf->end;
 
     sx = round((double)((int)s-winStart)*scale) + xOff;
     ex = round((double)((int)e-winStart)*scale) + xOff;
     color = (sf->orientation == -1) ? MG_RED : MG_BLUE;
 
     if (lastX != -1)
 	{
 	char buffer[1024];
 #define MG_ORANGE  0xff0082E6
 	int color = MG_GRAY;
 
 	if (lastQEnd != qs)
 	    color = MG_ORANGE;
 
 	// draw the vertical orange bars if there is an insert in the other sequence
 	if ((winBaseCount < showSnpWidth) )
 	    {
 	    if ((sf->orientation == 1) && (qs != lastQEnd) && (lastE == s))
 		{
 		hvGfxLine(hvg, sx, y2 - lineHeight/2 , sx, y2 + lineHeight/2, MG_ORANGE);
 		safef(buffer, sizeof buffer, "%dbp", qs - lastQEnd);
 		mapBoxHgcOrHgGene(hvg, s, e, sx, y2 - lineHeight/2, 1, lineHeight, tg->track,
 				    "foo", buffer, NULL, TRUE, NULL);
 		}
 	    else if ((sf->orientation == -1) && (qs != lastQEnd) && (lastS == e))
 		{
 		hvGfxLine(hvg, ex, y2 - lineHeight/2 , ex, y2 + lineHeight/2, MG_ORANGE);
 		safef(buffer, sizeof buffer, "%dbp", qs - lastQEnd);
 		mapBoxHgcOrHgGene(hvg, s, e, ex, y2 - lineHeight/2, 1, lineHeight, tg->track,
 				    "foo", buffer, NULL, TRUE, NULL);
 		}
 	    }
 
 	// now draw the lines between blocks
 	if ((!((lastX == sx) && (y1 == y2))) &&
 	    (sf->drawn  || ((prevSf != NULL) && (prevSf->drawn))) &&
 	    (((lastE > winStart) && (lastE < winEnd)) || 
 	    ((s > winStart) && (s < winEnd))))
 	    {
 	    if (lastLevel == sf->level)
 		{
 		safef(buffer, sizeof buffer, "%dbp", qs - lastQEnd);
 		if (sf->orientation == -1)
 		    {
 		    if (lastX != ex)
 			{
 			hvGfxLine(hvg, ex, y1, lastX, y2, color);
 			mapBoxHgcOrHgGene(hvg, s, e, ex, y1, lastX-ex, 1, tg->track,
 				"", buffer, NULL, TRUE, NULL);
 			}
 		    }
 		else
 		    {
 		    if (lastX != sx)
 			{
 			hvGfxLine(hvg, lastX, y1, sx, y2, color);
 			mapBoxHgcOrHgGene(hvg, s, e, lastX, y1, sx-lastX, 1, tg->track,
 				"", buffer, NULL, TRUE, NULL);
 			}
 		    }
 		}
 	    else if (lastLevel > sf->level)
 		{
 		hvGfxLine(hvg, lastX, y1, sx, y2, color);
 		hvGfxLine(hvg, sx, y2, sx, y2 - lineHeight - lineHeight/3, color);
 		char buffer[1024];
 		safef(buffer, sizeof buffer, "%d-%d %dbp gap",prevSf->qStart,prevSf->qEnd, qs - lastQEnd);
 		mapBoxHgcOrHgGene(hvg, s, e, sx, y2 - lineHeight - lineHeight/3, 2, lineHeight + lineHeight/3, tg->track,
 	                    "", buffer, NULL, TRUE, NULL);
 
 		}
 	    else
 		{
 		char buffer[1024];
 		safef(buffer, sizeof buffer, "%d-%d %dbp gap",prevSf->qStart,prevSf->qEnd, qs - lastQEnd);
 		if (sf->orientation == -1)
 		    {
 		    hvGfxLine(hvg, lastX-1, y1, ex, y2, color);
 		    hvGfxLine(hvg, ex, y2, ex, y2 + lineHeight , color);
 		    mapBoxHgcOrHgGene(hvg, s, e, ex-1, y2, 2, lineHeight , tg->track,
 				"", buffer, NULL, TRUE, NULL);
 		    }
 		else
 		    {
 		    hvGfxLine(hvg, lastX-1, y1, sx, y2, color);
 		    hvGfxLine(hvg, sx, y2, sx, y2 + lineHeight , color);
 		    mapBoxHgcOrHgGene(hvg, s, e, sx-1, y2, 2, lineHeight , tg->track,
 				"", buffer, NULL, TRUE, NULL);
 
 		    }
 		}
 	    }
 	}
     tEnd = e;
     tStart = s;
     qStart = sf->qStart;
     if (sf->orientation == -1)
 	lastX = sx;
     else
 	lastX = ex;
     lastS = s;
     lastE = e;
     lastLevel = sf->level;
     lastQEnd = qe;
     }
 }
 
 void halSnakeLoadItems(struct track *tg)
 // load up a snake from a HAL file.   This code is called in threads
 // so *no* use of globals please. All but full snakes are read into a single
 // linked feature.
 {
 unsigned showSnpWidth = cartOrTdbInt(cart, tg->tdb, 
     SNAKE_SHOW_SNP_WIDTH, SNAKE_DEFAULT_SHOW_SNP_WIDTH);
 
 // if we have a network error we want to put out a message about it
 struct errCatch *errCatch = errCatchNew();
 if (errCatchStart(errCatch))
     {
     char *fileName = trackDbSetting(tg->tdb, "bigDataUrl");
     char *otherSpecies = trackDbSetting(tg->tdb, "otherSpecies");
     int handle = halOpenLOD(fileName);
     boolean isPackOrFull = (tg->visibility == tvFull) || 
 	(tg->visibility == tvPack);
     hal_dup_type_t dupMode =  (isPackOrFull) ? HAL_QUERY_AND_TARGET_DUPS :
 	HAL_QUERY_DUPS;
     int needSeq = isPackOrFull && (winBaseCount < showSnpWidth) ? 1 : 0;
     int mapBackAdjacencies = (tg->visibility == tvFull);
     struct hal_block_results_t *head = halGetBlocksInTargetRange(handle, otherSpecies, trackHubSkipHubName(database), chromName, winStart, winEnd, 0, needSeq, dupMode,mapBackAdjacencies);
 
     // did we get any blocks from HAL
     if (head == NULL)
 	{
 	errCatchEnd(errCatch);
 	return;
 	}
     struct hal_block_t* cur = head->mappedBlocks;
     struct linkedFeatures *lf = NULL;
     struct hash *qChromHash = newHash(5);
     struct linkedFeatures *lfList = NULL;
     char buffer[4096];
 
 #ifdef NOTNOW
     struct hal_target_dupe_list_t* targetDupeBlocks = head->targetDupeBlocks;
 
     for(;targetDupeBlocks; targetDupeBlocks = targetDupeBlocks->next)
 	{
 	printf("<br>id: %d qChrom %s\n", targetDupeBlocks->id, targetDupeBlocks->qChrom);
 	struct hal_target_range_t *range = targetDupeBlocks->tRange;
 	for(; range; range = range->next)
 	    {
 	    printf("<br>   %ld : %ld\n", range->tStart, range->size);
 	    }
 	}
 #endif
 
     while (cur)
     {
 	struct hashEl* hel;
 
 	if (tg->visibility == tvFull)
 	    safef(buffer, sizeof buffer, "%s", cur->qChrom);
 	else
 	    {
 	    // make sure the block is on the screen 
 	    if (!positiveRangeIntersection(winStart, winEnd, cur->tStart,  cur->tStart + cur->size))
 		{
 		cur = cur->next;
 		continue;
 		}
 	    safef(buffer, sizeof buffer, "allInOne");
 	    }
 
 	if ((hel = hashLookup(qChromHash, buffer)) == NULL)
 	    {
 	    AllocVar(lf);
 	    lf->isHalSnake = TRUE;
 	    slAddHead(&lfList, lf);
 	    lf->start = 0;
 	    lf->end = 1000000000;
 	    lf->grayIx = maxShade;
 	    lf->name = cloneString(buffer);
 	    lf->extra = cloneString(buffer);
 	    lf->orientation = (cur->strand == '+') ? 1 : -1;
 	    hashAdd(qChromHash, lf->name, lf);
 
 	    // now figure out where the duplication bars go
 	    struct hal_target_dupe_list_t* targetDupeBlocks = head->targetDupeBlocks;
 
 	    if ((tg->visibility == tvPack) || (tg->visibility == tvFull))
 		for(;targetDupeBlocks; targetDupeBlocks = targetDupeBlocks->next)
 		    {
 		    if ((tg->visibility == tvPack) ||
 			((tg->visibility == tvFull) &&
 			 (sameString(targetDupeBlocks->qChrom, cur->qChrom))))
 			{
 			struct hal_target_dupe_list_t* dupeList;
 			AllocVar(dupeList);
 			*dupeList = *targetDupeBlocks;
 			slAddHead(&lf->dupeList, dupeList);
 			// TODO: should clone the target_range structures
 			// rather than copying them
 			}
 		    }
 	    }
 	else
 	    {
 	    lf = hel->val;
 	    }
 
 	struct snakeFeature  *sf;
 	AllocVar(sf);
 	slAddHead(&lf->components, sf);
 	
 	sf->start = cur->tStart;
 	sf->end = cur->tStart + cur->size;
 	sf->qStart = cur->qStart;
 	sf->qEnd = cur->qStart + cur->size;
 	sf->orientation = (cur->strand == '+') ? 1 : -1;
 	sf->tSequence = cloneString(cur->tSequence);
 	sf->qSequence = cloneString(cur->qSequence);
+	if (sf->tSequence != NULL)
 	    toUpperN(sf->tSequence, strlen(sf->tSequence));
+	if (sf->qSequence != NULL)
 	    toUpperN(sf->qSequence, strlen(sf->qSequence));
 	sf->qName = cur->qChrom;
 
 	cur = cur->next;
     }
     if (tg->visibility == tvFull)
 	{
 	for(lf=lfList; lf ; lf = lf->next)
 	    {
 	    slSort(&lf->components, snakeFeatureCmpQStart);
 	    }
 	}
     else if ((tg->visibility == tvPack) && (lfList != NULL))
 	{
 	assert(lfList->next == NULL);
 	slSort(&lfList->components, snakeFeatureCmpTStart);
 	}
     
     //halFreeBlocks(head);
     //halClose(handle, myThread);
 
     tg->items = lfList;
     }
 errCatchEnd(errCatch);
 if (errCatch->gotError)
     {
     tg->networkErrMsg = cloneString(errCatch->message->string);
     tg->drawItems = bigDrawWarning;
     tg->totalHeight = bigWarnTotalHeight;
     }
 errCatchFree(&errCatch);
 }
 
 void halSnakeDrawLeftLabels(struct track *tg, int seqStart, int seqEnd,
         struct hvGfx *hvg, int xOff, int yOff, int width, int height,
         boolean withCenterLabels, MgFont *font,
         Color color, enum trackVisibility vis)
 {
 }
 
 void halSnakeMethods(struct track *tg, struct trackDb *tdb, 
 	int wordCount, char *words[])
 {
 linkedFeaturesMethods(tg);
 tg->canPack = tdb->canPack = TRUE;
 tg->loadItems = halSnakeLoadItems;
 tg->drawItems = snakeDraw;
 tg->mapItemName = lfMapNameFromExtra;
 tg->subType = lfSubChain;
 //tg->extraUiData = (void *) chainCart;
 tg->totalHeight = snakeHeight; 
 tg->drawLeftLabels = halSnakeDrawLeftLabels;
 
 tg->drawItemAt = snakeDrawAt;
 tg->itemHeight = snakeItemHeight;
 }
 #endif  // USE_HAL
 
 #ifdef NOTNOW
 
 // from here down are routines to support the visualization of chains as snakes
 // this code is currently BROKEN, and may be removed completely in the future
 
 struct cartOptions
     {
     enum chainColorEnum chainColor; /*  ChromColors, ScoreColors, NoColors */
     int scoreFilter ; /* filter chains by score if > 0 */
     };
 
 // mySQL code to read in chains
 
 static void doQuery(struct sqlConnection *conn, char *fullName, 
 			struct lm *lm, struct hash *hash, 
 			int start, int end,  boolean isSplit, int chainId)
 /* doQuery- check the database for chain elements between
  * 	start and end.  Use the passed hash to resolve chain
  * 	id's and place the elements into the right
  * 	linkedFeatures structure
  */
 {
 struct sqlResult *sr = NULL;
 char **row;
 struct linkedFeatures *lf;
 struct snakeFeature *sf;
 struct dyString *query = newDyString(1024);
 char *force = "";
 
 if (isSplit)
     force = "force index (bin)";
 
 if (chainId == -1)
     sqlDyStringPrintf(query, 
 	"select chainId,tStart,tEnd,qStart from %sLink %-s where ",
 	fullName, force);
 else
     sqlDyStringPrintf(query, 
 	"select chainId, tStart,tEnd,qStart from %sLink where chainId=%d and ",
 	fullName, chainId);
 if (!isSplit)
     sqlDyStringPrintf(query, "tName='%s' and ", chromName);
 hAddBinToQuery(start, end, query);
 dyStringPrintf(query, "tStart<%u and tEnd>%u", end, start);
 sr = sqlGetResult(conn, query->string);
 
 /* Loop through making up simple features and adding them
  * to the corresponding linkedFeature. */
 while ((row = sqlNextRow(sr)) != NULL)
     {
     lf = hashFindVal(hash, row[0]);
     if (lf != NULL)
 	{
 	struct chain *pChain = lf->extra;
 	lmAllocVar(lm, sf);
 	sf->start = sqlUnsigned(row[1]);
 	sf->end = sqlUnsigned(row[2]);
 	sf->qStart = sqlUnsigned(row[3]); 
 
 	sf->qEnd = sf->qStart + (sf->end - sf->start);
 	if ((pChain) && pChain->qStrand == '-')
 	    {
 	    int temp;
 
 	    temp = sf->qStart;
 	    sf->qStart = pChain->qSize - sf->qEnd;
 	    sf->qEnd = pChain->qSize - temp;
 	    }
 	sf->orientation = lf->orientation;
 	slAddHead(&lf->components, sf);
 	}
     }
 sqlFreeResult(&sr);
 dyStringFree(&query);
 }
 
 static void fixItems(struct linkedFeatures *lf)
 // put all chain blocks from a single query chromosome into one
 // linkedFeatures structure
 {
 struct linkedFeatures *firstLf, *next;
 struct snakeFeature  *sf,  *nextSf;
 
 firstLf = lf;
 for (;lf; lf = next)
     {
     next = lf->next;
     if (!sameString(firstLf->name, lf->name) && (lf->components != NULL))
 	{
 	slSort(&firstLf->components, snakeFeatureCmpQStart);
 	firstLf = lf;
 	}
     for (sf =  (struct snakeFeature *)lf->components; sf != NULL; sf = nextSf)
 	{
 	sf->qName = lf->name;
 	sf->orientation = lf->orientation;
 	nextSf = sf->next;
 	if (firstLf != lf)
 	    {
 	    lf->components = NULL;
 	    slAddHead(&firstLf->components, sf);
 	    }
 	}
     }
 
 if (firstLf != NULL)
     {
     slSort(&firstLf->components, snakeFeatureCmpQStart);
     firstLf->next = 0;
     }
 }
 
 
 static void loadLinks(struct track *tg, int seqStart, int seqEnd,
          enum trackVisibility vis)
 // load up the chain elements into linkedFeatures
 {
 int start, end, extra;
 char fullName[64];
 int maxOverLeft = 0, maxOverRight = 0;
 int overLeft, overRight;
 struct linkedFeatures *lf;
 struct lm *lm;
 struct hash *hash;	/* Hash of chain ids. */
 struct sqlConnection *conn;
 lm = lmInit(1024*4);
 hash = newHash(0);
 conn = hAllocConn(database);
 
 /* Make up a hash of all linked features keyed by
  * id, which is held in the extras field.  */
 for (lf = tg->items; lf != NULL; lf = lf->next)
     {
     char buf[256];
     struct chain *pChain = lf->extra;
     safef(buf, sizeof(buf), "%d", pChain->id);
     hashAdd(hash, buf, lf);
     overRight = lf->end - seqEnd;
     if (overRight > maxOverRight)
 	maxOverRight = overRight;
     overLeft = seqStart - lf->start ;
     if (overLeft > maxOverLeft)
 	maxOverLeft = overLeft;
     }
 
 if (hash->size)
     {
     boolean isSplit = TRUE;
     /* Make up range query. */
     safef(fullName, sizeof fullName, "%s_%s", chromName, tg->table);
     if (!hTableExists(database, fullName))
 	{
 	strcpy(fullName, tg->table);
 	isSplit = FALSE;
 	}
 
     /* in dense mode we don't draw the lines 
      * so we don't need items off the screen 
      */
     if (vis == tvDense)
 	doQuery(conn, fullName, lm,  hash, seqStart, seqEnd,  isSplit, -1);
     else
 	{
 	/* if chains extend beyond edge of window we need to get 
 	 * elements that are off the screen
 	 * in both directions so we know whether to draw
 	 * one or two lines to the edge of the screen.
 	 */
 #define STARTSLOP	0
 #define MULTIPLIER	10
 #define MAXLOOK		100000
 	extra = (STARTSLOP < maxOverLeft) ? STARTSLOP : maxOverLeft;
 	start = seqStart - extra;
 	extra = (STARTSLOP < maxOverRight) ? STARTSLOP : maxOverRight;
 	end = seqEnd + extra;
 	doQuery(conn, fullName, lm,  hash, start, end,  isSplit, -1);
 	}
     }
 hFreeConn(&conn);
 }
 
 void snakeLoadItems(struct track *tg)
 // Load chains from a mySQL database
 {
 char *track = tg->table;
 struct chain chain;
 int rowOffset;
 char **row;
 struct sqlConnection *conn = hAllocConn(database);
 struct sqlResult *sr = NULL;
 struct linkedFeatures *list = NULL, *lf;
 int qs;
 char optionChr[128]; /* Option -  chromosome filter */
 char *optionChrStr;
 char extraWhere[128] ;
 struct cartOptions *chainCart;
 struct chain *pChain;
 
 chainCart = (struct cartOptions *) tg->extraUiData;
 
 safef( optionChr, sizeof(optionChr), "%s.chromFilter", tg->table);
 optionChrStr = cartUsualString(cart, optionChr, "All");
 int ourStart = winStart;
 int ourEnd = winEnd;
 
 // we're grabbing everything now.. we really should be 
 // doing this as a preprocessing stage, rather than at run-time
 ourStart = 0;
 ourEnd = 500000000;
 //ourStart = winStart;
 //ourEnd = winEnd;
 if (startsWith("chr",optionChrStr)) 
     {
     safef(extraWhere, sizeof(extraWhere), 
             "qName = \"%s\" and score > %d",optionChrStr, 
             chainCart->scoreFilter);
     sr = hRangeQuery(conn, track, chromName, ourStart, ourEnd, 
             extraWhere, &rowOffset);
     }
 else
     {
     if (chainCart->scoreFilter > 0)
         {
         safef(extraWhere, sizeof(extraWhere), 
                 "score > \"%d\"",chainCart->scoreFilter);
         sr = hRangeQuery(conn, track, chromName, ourStart, ourEnd, 
                 extraWhere, &rowOffset);
         }
     else
         {
         safef(extraWhere, sizeof(extraWhere), " ");
         sr = hRangeQuery(conn, track, chromName, ourStart, ourEnd, 
                 NULL, &rowOffset);
         }
     }
 while ((row = sqlNextRow(sr)) != NULL)
     {
     chainHeadStaticLoad(row + rowOffset, &chain);
     AllocVar(pChain);
     *pChain = chain;
     AllocVar(lf);
     lf->start = lf->tallStart = chain.tStart;
     lf->end = lf->tallEnd = chain.tEnd;
     lf->grayIx = maxShade;
     if (chainCart->chainColor == chainColorScoreColors)
 	{
 	float normScore = sqlFloat((row+rowOffset)[11]);
 	lf->grayIx = (int) ((float)maxShade * (normScore/100.0));
 	if (lf->grayIx > (maxShade+1)) lf->grayIx = maxShade+1;
 	lf->score = normScore;
 	}
     else
 	lf->score = chain.score;
 
     lf->filterColor = -1;
 
     if (chain.qStrand == '-')
 	{
 	lf->orientation = -1;
         qs = chain.qSize - chain.qEnd;
 	}
     else
         {
 	lf->orientation = 1;
 	qs = chain.qStart;
 	}
     char buffer[1024];
     safef(buffer, sizeof(buffer), "%s", chain.qName);
     lf->name = cloneString(buffer);
     lf->extra = pChain;
     slAddHead(&list, lf);
     }
 
 /* Make sure this is sorted if in full mode. Sort by score when
  * coloring by score and in dense */
 if (tg->visibility != tvDense)
     slSort(&list, linkedFeaturesCmpStart);
 else if ((tg->visibility == tvDense) &&
 	(chainCart->chainColor == chainColorScoreColors))
     slSort(&list, chainCmpScore);
 else
     slReverse(&list);
 tg->items = list;
 
 
 /* Clean up. */
 sqlFreeResult(&sr);
 hFreeConn(&conn);
 
 /* now load the items */
 loadLinks(tg, ourStart, ourEnd, tg->visibility);
 lf=tg->items;
 fixItems(lf);
 }	/*	chainLoadItems()	*/
 
 void snakeMethods(struct track *tg, struct trackDb *tdb, 
 	int wordCount, char *words[])
 /* Fill in custom parts of alignment chains. */
 {
 
 struct cartOptions *chainCart;
 
 AllocVar(chainCart);
 
 boolean normScoreAvailable = chainDbNormScoreAvailable(tdb);
 
 /*	what does the cart say about coloring option	*/
 chainCart->chainColor = chainFetchColorOption(cart, tdb, FALSE);
 
 chainCart->scoreFilter = cartUsualIntClosestToHome(cart, tdb,
 	FALSE, SCORE_FILTER, 0);
 
 
 linkedFeaturesMethods(tg);
 tg->itemColor = lfChromColor;	/*	default coloring option */
 
 /*	if normScore column is available, then allow coloring	*/
 if (normScoreAvailable)
     {
     switch (chainCart->chainColor)
 	{
 	case (chainColorScoreColors):
 	    tg->itemColor = chainScoreColor;
 	    tg->colorShades = shadesOfGray;
 	    break;
 	case (chainColorNoColors):
 	    setNoColor(tg);
 	    break;
 	default:
 	case (chainColorChromColors):
 	    break;
 	}
     }
 else
     {
     char option[128]; /* Option -  rainbow chromosome color */
     char *optionStr;	/* this old option was broken before */
 
     safef(option, sizeof(option), "%s.color", tg->table);
     optionStr = cartUsualString(cart, option, "on");
     if (differentWord("on",optionStr))
 	{
 	setNoColor(tg);
 	chainCart->chainColor = chainColorNoColors;
 	}
     else
 	chainCart->chainColor = chainColorChromColors;
     }
 
 tg->canPack = FALSE;
 tg->loadItems = snakeLoadItems;
 tg->drawItems = snakeDraw;
 tg->mapItemName = lfMapNameFromExtra;
 tg->subType = lfSubChain;
 tg->extraUiData = (void *) chainCart;
 tg->totalHeight = snakeHeight; 
 
 tg->drawItemAt = snakeDrawAt;
 tg->itemHeight = snakeItemHeight;
 }
 
 static Color chainScoreColor(struct track *tg, void *item, struct hvGfx *hvg)
 {
 struct linkedFeatures *lf = (struct linkedFeatures *)item;
 
 return(tg->colorShades[lf->grayIx]);
 }
 
 static Color chainNoColor(struct track *tg, void *item, struct hvGfx *hvg)
 {
 return(tg->ixColor);
 }
 
 static void setNoColor(struct track *tg)
 {
 tg->itemColor = chainNoColor;
 tg->color.r = 0;
 tg->color.g = 0;
 tg->color.b = 0;
 tg->altColor.r = 127;
 tg->altColor.g = 127;
 tg->altColor.b = 127;
 tg->ixColor = MG_BLACK;
 tg->ixAltColor = MG_GRAY;
 }
 #endif