1e7f2a7a806fccac0d5633d8191b8475821b0480
ceisenhart
  Sat Aug 23 11:55:44 2014 -0700
ExpData.c takes in a matrix of data and a corresponding matrix of names.The output is a .json file which can be used for visualizations.
forceLayout.html is a d3 visualization that is generated with  a .json file.
radialDend.html is a d3 visualization that is generated with a .json
file.

hacTree.c, refactored the code slightly to remove uneccesary merge
calls.

bigWigCluster.c
runs on a list of bigWig files, uses the hacTree library to cluster the
bigWigs into a binary tree. The output is a .json file which can be used
for visualizations

diff --git src/hg/expData/expData.c src/hg/expData/expData.c
index c25c336..91d54dd 100644
--- src/hg/expData/expData.c
+++ src/hg/expData/expData.c
@@ -1,334 +1,463 @@
-/* expData -  Takes in a relational database and outputs expression information. */
+/* expData -  Takes in GNF expression data, organizes it using a hierarchical agglomerative clustering algorithm. The output defaults to a hierarchichal .json format, with two additional options. */
 #include "common.h"
 #include "linefile.h"
 #include "hash.h"
 #include "options.h"
 #include "obscure.h"
 #include "jksql.h"
 #include "expData.h"
 #include "sqlList.h"
 #include "hacTree.h"
-#include "jsonWrite.h"
+#include "rainbow.h" 
+
+/* Visually the nodes will be assigned a color corresponding to a range of sizes. 
+ * This constant dictates how many colors will be displayed (1-20).  */
+int clCgConstant = 20;
+/* A normalizing constant for the distances, this corresponds to 
+ * the size of the nodes in the standard output and the link distance in the forceLayout output*/
+int clNormConstant = 20; 
+boolean clForceLayout = FALSE; // Prints the data in .json format for d3 force layout visualizations
+int target = 0;  // Used for the target value in rlinkJson.
+float longest = 0;  // Used to normalize link distances in rlinkJson.
 
 void usage()
 /* Explain usage and exit. */
 {
 errAbort(
-  "expData -  Takes in a relational database and outputs expression information\n"
+  "expData -  Takes in a relational database and outputs expression information.\n"
+  "Standard output is .json format intended for d3 hierarchical displays. \n"
   "usage:\n"
-  "   expData biosamples matrix output\n"
+  "   expData matrix biosamples output\n"
   "options:\n"
-  "   -xxx=XXX\n"
+  "   -forceLayout = bool Prints the output in .json format for d3 forceLayouts\n"
+  "   -normConstant = int Normalizing constant for d3, default is 20. For forceLayout 100 is reccomended \n"
+  "   -cgConstant = int Defines the number of possible colors for nodes, 1 - 20 \n"
   );
 }
 
 /* Command line validation table. */
 static struct optionSpec options[] = {
+   {"normConstant", OPTION_INT},
+   {"cgConstant", OPTION_INT},
+   {"structuredOutput", OPTION_BOOLEAN},
+   {"forceLayout", OPTION_BOOLEAN},
    {NULL, 0},
 };
 
-int target = 0;  // Used for the target value in rlinkJson.
-float longest = 0;  // Used to normalize link distances in rlinkJson.
+struct jsonNodeLine
+/* Stores the information for a single json node line */
+    {
+    struct jsonNodeLine *next;
+    char* name;		// the source for a given link
+    double distance;	// the distance for a given link
+    };
+
+struct jsonLinkLine
+/* Stores the information for a single json link line */
+    {
+    struct jsonLinkLine *next;
+    int source;		// the source for a given link
+    int target;		// the target for a given link
+    double distance;	// the distance for a given link
+    };
 
 struct bioExpVector
 /* Contains expression information for a biosample on many genes. */
     {
     struct bioExpVector *next;
     char *name;	    // name of biosample.
     int count;	    // Number of genes we have data for.
     double *vector;   //  An array allocated dynamically.
+    struct rgbColor color;  // Color for this one
     };
 
 struct bioExpVector *bioExpVectorListFromFile(char *matrixFile)
 // Read a tab-delimited file and return list of bioExpVector.
-
 {
 int vectorSize = 0;
 struct lineFile *lf = lineFileOpen(matrixFile, TRUE);
 char *line, **row = NULL;
 struct bioExpVector *list = NULL, *el;
 while (lineFileNextReal(lf, &line))    
     {
     if (vectorSize == 0)
         {
 	// Detect first row.
 	vectorSize = chopByWhite(line, NULL, 0);  // counting up
 	AllocArray(row, vectorSize);
 	continue;
 	}
     AllocVar(el);
     AllocArray(el->vector, vectorSize);
     el->count = chopByWhite(line, row, vectorSize);
-    assert(el->count == vectorSize);
+//    assert(el->count == vectorSize);
     int i;
     for (i = 0; i < el->count; ++i)
 	el->vector[i] = sqlDouble(row[i]);
     slAddHead(&list, el);
     }
+
 lineFileClose(&lf);
 slReverse(&list);
 return list;
 }
 
 void fillInNames(struct bioExpVector *list, char *nameFile)
 /* Fill in name field from file. */
 {
 struct lineFile *lf = lineFileOpen(nameFile, TRUE);
 char *line;
 struct bioExpVector *el = list;
 while (lineFileNextReal(lf, &line))
      {
      if (el == NULL)
 	 {
          warn("More names than items in list");
 	 break;
 	 }
      el->name = cloneString(line);
      el = el->next;
      }
 lineFileClose(&lf);
 }
 
-void rPrintNodes(struct jsonWrite *jw, FILE *f, struct hacTree *tree)
+void printJsonNodeLine(FILE *f, struct jsonNodeLine *node)
+{
+fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ",");
+fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "},");
+}
+
+void printEndJsonNodeLine(FILE *f, struct jsonNodeLine *node)
+{
+fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ",");
+fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "}");
+}
+
+void printJsonLinkLine(FILE *f, struct jsonLinkLine *links)
+/* Prints out a single json link line */
+{
+fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", links->source, ",");
+fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ",");  
+fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "},");  
+}
+
+void printEndJsonLinkLine(FILE *f, struct jsonLinkLine *links)
+/* Prints out a single json link line */
+{
+fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", links->source, ",");
+fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ",");  
+fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "}");  
+}
+
+void rPrintNodes(FILE *f, struct hacTree *tree, struct jsonNodeLine *nodes)
+// Recursively adds the node information to a linked list
 {
-// Recursively prints out the nodes in a depth first order starting on the left
 char *tissue = ((struct bioExpVector *)(tree->itemOrCluster))->name;
-jsonWriteObjectStart(jw);
 if (tree->childDistance != 0) 
     // If the current object is a node then we assign no name.
     {
-    fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", " ", ",");
-    jsonWriteString(jw, "name", " ");
-    jsonWriteNumber(jw, "y", tree->childDistance);
-    fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , tree->childDistance, "},");
+    struct jsonNodeLine *nNode;
+    AllocVar(nNode);
+    nNode->name = " ";
+    nNode->distance = tree->childDistance;
+    slAddHead(nodes, nNode); // add the node
     }
 else {
     // Otherwise the current object is a leaf, and the tissue name is printed. 
-    jsonWriteString(jw, "name", tissue);
-    jsonWriteNumber(jw, "y", tree->childDistance);
-    fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", tissue, ",");
-    fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , tree->childDistance, "},");
+    struct jsonNodeLine *lNode;
+    AllocVar(lNode);
+    lNode->name = tissue;
+    lNode->distance = tree->childDistance;
+    slAddHead(nodes, lNode); // add the node
     }
-jsonWriteObjectEnd(jw);
+
 if (tree->left == NULL && tree->right == NULL)
+    // Stop at the last element
     { 
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
-rPrintNodes(jw, f, tree->left);
-rPrintNodes(jw, f, tree->right);
+rPrintNodes(f, tree->left, nodes);
+rPrintNodes(f, tree->right, nodes);
 }
 
 
-
-void rPrintLinks(FILE *f, struct hacTree *tree, int source)
+void rPrintLinks(int normConstant, FILE *f, struct hacTree *tree, int source, struct jsonLinkLine *links)
+// Recursively loads the link information into a linked list
 {
-// Recursively prints the links in json format. 
 if (tree->childDistance > longest)
     // the first distance will be the longest, and is used for normalization
     longest = tree->childDistance;
-/* if the current location is a leaf */
 if (tree->left == NULL && tree->right == NULL)
+    // Stop at the last element
     { 
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
-/* check for the end of the tree */
 
-/* Left recursion; the source and target are always ofset by 1. */
+// Left recursion.
+struct jsonLinkLine *lLink;
+AllocVar(lLink);
 ++target;
-fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", target - 1, ",");
-fprintf(f,"\"%s\"%s%d%s", "target", ":" , target, ",");  
-fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , 100*(tree->childDistance/longest) , "},");  
-/* Prepares the source for the right recursion. */
-source = target;
-rPrintLinks(f, tree->left, source);
-/* Right recursion. */
+lLink->source = target - 1;	 // The source and target are always ofset by 1. 
+lLink->target = target;
+lLink->distance = normConstant*(tree->childDistance/longest);	//Calculates the link distance
+source = target;		// Prepares the source for the right recursion. 
+slAddHead(links, lLink); 	// Add the link
+rPrintLinks(normConstant,f, tree->left, source, links);
+
+// Right recursion.
+struct jsonLinkLine *rLink;
+AllocVar(rLink);
 ++target;
-fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", source - 1 , ",");
-fprintf(f,"\"%s\"%s%d%s", "target", ":" , target, ",");  
-fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , 100*(tree->childDistance/longest) , "},");  
-rPrintLinks(f, tree->right, ++source);
+rLink->source = source - 1;	// The source is dependent on the last target of the left recursion
+rLink->target = target;	
+rLink->distance = normConstant*(tree->childDistance/longest);
+slAddHead(links, rLink);		// Add the link
+rPrintLinks(normConstant,f, tree->right, ++source, links);
 }
 
-void printJson(FILE *f, struct hacTree *tree)
-/* Prints the hacTree into a Json file format */
+void printForceLayoutJson(int normConstant, FILE *f, struct hacTree *tree)
+// Prints the hacTree into a .json file format for d3 forceLayout visualizations.
 {
-int source = 0;
 // Basic json template for d3 visualizations
-struct jsonWrite *jw = jsonWriteNew();
-jsonWriteObjectStart(jw);
 fprintf(f,"%s\n", "{");
-jsonWriteListStart(jw, "nodes");
 fprintf(f,"  \"%s\"%s\n", "nodes", ":[" );
-rPrintNodes(jw, f, tree);
+
+// Print the nodes
+struct jsonNodeLine *nodes;
+AllocVar(nodes);
+rPrintNodes(f, tree, nodes);
+slReverse(&nodes);
+int nodeCount = slCount(nodes);
+int j;
+for (j = 0; j < nodeCount -1; ++j)
+   // iterate through the linked nodelist printing nodes
+   {
+   if (j == nodeCount - 2)
+       printEndJsonNodeLine(f, nodes);
+   else
+       {
+       printJsonNodeLine(f, nodes);
+       nodes = nodes -> next;
+       }
+   }
 fprintf(f,  "%s\n", "],");
-// Basic json template for d3 visualizations
 fprintf(f,  "\"%s\"%s\n", "links", ":[" );
-rPrintLinks(f,tree, source);
-fprintf(f,"  %s\n", "]");
 
+// Print the links
+struct jsonLinkLine *links;
+AllocVar(links);
+rPrintLinks(normConstant,f,tree, 0, links);
+slReverse(&links);
+int linkCount = slCount(links);
+int i;
+for (i = 0; i< linkCount -1; ++i)
+   // iterate through the linked linklist printing links
+   {
+   if (i == linkCount - 2)
+       printEndJsonLinkLine(f, links);
+   else
+       {
+       printJsonLinkLine(f, links);
+       links = links -> next;
+       }
+   }
+fprintf(f,"  %s\n", "]");
 fprintf(f,"%s\n", "}");
-jsonWriteObjectEnd(jw);
-writeGulp("jsonWrite.out", jw->dy->string, jw->dy->stringSize);
 }
 
 
-static void rPrintSlBioExpVectorTree(FILE *f, struct hacTree *tree, int level,double distance)
-/* Recursively print out cluster as nested-parens with {}'s around leaf nodes. */
+static void rAddLeaf(struct hacTree *tree, struct slRef **pList)
+/* Recursively add leaf to list */
 {
-char *tissue = ((struct bioExpVector *)(tree->itemOrCluster))->name;
-int i;
-for (i = 0;  i < level;  i++)
-    fputc(' ', f);
 if (tree->left == NULL && tree->right == NULL)
+    refAdd(pList, tree->itemOrCluster);
+else
     {
-    fprintf(f, "{%s}%0.31f", tissue, distance);
-    return;
+    rAddLeaf(tree->left, pList);
+    rAddLeaf(tree->right, pList);
     }
-else if (tree->left == NULL || tree->right == NULL)
-    errAbort("\nHow did we get a node with one NULL kid??");
-fprintf(f, "(%s%f\n", "node", tree->childDistance);
-distance += tree->childDistance;
-rPrintSlBioExpVectorTree(f, tree->left, level+1, distance);
-fputs(",\n", f);
-rPrintSlBioExpVectorTree(f, tree->right, level+1, distance);
-fputc('\n', f);
-for (i=0;  i < level;  i++)
-    fputc(' ', f);
-fputs(")", f);
 }
 
-void printSlBioExpVectorTree(FILE *f, struct hacTree *tree)
-/* Print out cluster as nested-parens with {}'s around leaf nodes. */
-{
-if (tree == NULL)
+struct slRef *getOrderedLeafList(struct hacTree *tree)
+/* Return list of references to bioExpVectors from leaf nodes
+ * ordered by position in hacTree */
 {
-    fputs("Empty tree.\n", f);
-    return;
-    }
-double distance = 0;
-rPrintSlBioExpVectorTree(f, tree, 0, distance);
-fputc('\n', f);
+struct slRef *leafList = NULL;
+rAddLeaf(tree, &leafList);
+slReverse(&leafList);
+return leafList;
 }
 
-static void rPrintNestedJson(FILE *f, struct hacTree *tree, int level, double distance)
-/* Recursively print out cluster as nested-parens with {}'s around leaf nodes. */
+static void rPrintHierarchicalJson(FILE *f, struct hacTree *tree, int level, double distance,
+		int normConstant, int cgConstant)
+/* Recursively prints out the elements of the hierarchical .json file. */
 {
-char *tissue = ((struct bioExpVector *)(tree->itemOrCluster))->name;
-int i;
+struct bioExpVector *bio = (struct bioExpVector *)tree->itemOrCluster;
+char *tissue = bio->name;
+struct rgbColor colors = bio->color;
 if (tree->childDistance > longest)
     // the first distance will be the longest, and is used for normalization
     longest = tree->childDistance;
+int i;
 for (i = 0;  i < level;  i++)
-    fputc(' ', f);
+    fputc(' ', f); // correct spacing for .json format
 if (tree->left == NULL && tree->right == NULL)
     {
-    fprintf(f, "{\"%s\"%s \"%s\"%s\"%s\"%s %f}", "name", ":", tissue, ", ", "size", ":", distance);
+    // Prints out the leaf objects
+ //   fprintf(f, "{\"name\": \"%s\",\"similarity\": %f,\"linkGroup\": \" \"", tissue, distance);
+    fprintf(f, "{\"%s\"%s \"%s\"%s\"%s\"%s %f %s\"%s\"%s \"rgb(%i,%i,%i)\"}", "name", ":", tissue, ", ",
+    		"similarity", ":", distance, "," , "colorGroup", ":", colors.r, colors.g, colors.b);
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
-//fprintf(f, "{\"%s\"%s \"%f\"%s\n", "name", ":", " ", ",");
-fprintf(f, "{\"%s\"%s \"%f\"%s\n", "name", ":", 100*(tree->childDistance/longest), ",");
+
+// Prints out the node object and opens a new children block
+fprintf(f, "{\"%s\"%s \"%s\"%s", "name", ":", " ", ",");
+fprintf(f, "\"colorGroup\": \"rgb(%i,%i,%i)\",", colors.r, colors.g, colors.b );
+fprintf(f, "\"%s\"%s \"%f\"%s\n", "distance", ":", normConstant * (tree->childDistance/longest), ",");
 for (i = 0;  i < level + 1;  i++)
     fputc(' ', f);
 fprintf(f, "\"%s\"%s\n", "children", ": [");
-distance += tree->childDistance;
-rPrintNestedJson(f, tree->left, level+1, distance);
+distance = tree->childDistance/longest; 
+rPrintHierarchicalJson(f, tree->left, level+1, distance, normConstant, cgConstant);
 fputs(",\n", f);
-rPrintNestedJson(f, tree->right, level+1, distance);
+rPrintHierarchicalJson(f, tree->right, level+1, distance, normConstant, cgConstant);
 fputc('\n', f);
+// Closes the children block for node objects
 for (i=0;  i < level + 1;  i++)
     fputc(' ', f);
 fputs("]\n", f);
 for (i = 0;  i < level;  i++)
     fputc(' ', f);
 fputs("}", f);
 }
 
-void printNestedJson(FILE *f, struct hacTree *tree)
-/* Print out cluster as nested-parens with {}'s around leaf nodes. */
+void printHierarchicalJson(FILE *f, struct hacTree *tree, int normConstant, int cgConstant)
+/* Prints out the binary tree into .json format intended for d3
+ * hierarchical layouts */
 {
 if (tree == NULL)
     {
     fputs("Empty tree.\n", f);
     return;
     }
 double distance = 0;
-rPrintNestedJson(f, tree, 0, distance);
+rPrintHierarchicalJson(f, tree, 0, distance, normConstant, cgConstant);
 fputc('\n', f);
 }
 
-char* floatToString(float input)
-{
-char* result = needMem(sizeof(result));
-sprintf(result,"%f", input);
-return result;
-freez(result);
-}
 
 double slBioExpVectorDistance(const struct slList *item1, const struct slList *item2, void *extraData)
 /* Return the absolute difference between the two kids' values. 
  * Designed for HAC tree use*/
 {
+verbose(1,"Calculating Distance...\n");
 const struct bioExpVector *kid1 = (const struct bioExpVector *)item1;
 const struct bioExpVector *kid2 = (const struct bioExpVector *)item2;
 int j;
 double diff = 0, sum = 0;
 for (j = 0; j < kid1->count; ++j)
     {
     diff = kid1->vector[j] - kid2->vector[j];
     sum += (diff * diff);
     }
 return sqrt(sum);
 }
 
 
 struct slList *slBioExpVectorMerge(const struct slList *item1, const struct slList *item2,
 				void *unusedExtraData)
 /* Make a new slPair where the name is the children names concattenated and the 
  * value is the average of kids' values.
  * Designed for HAC tree use*/
 {
+verbose(1,"Merging...\n");
 const struct bioExpVector *kid1 = (const struct bioExpVector *)item1;
 const struct bioExpVector *kid2 = (const struct bioExpVector *)item2;
 struct bioExpVector *el;
 AllocVar(el);
 AllocArray(el->vector, kid1->count);
 el->count = kid1->count; 
 el->name = catTwoStrings(kid1->name, kid2->name);
 int i;
 for (i = 0; i < el->count; ++i)
     {
     el->vector[i] = (kid1->vector[i] + kid2->vector[i])/2;
     }
 return (struct slList *)(el);
 }
 
-void expData(char *matrixFile, char *nameFile, char *outFile)
+void colorLeaves(struct slRef *leafList)
+/* Assign colors of rainbow to leaves. */
+{
+/* Loop through list once to figure out total, since we need to
+ * normalize */
+double total = 0;
+double purplePos = 0.80;
+struct slRef *el, *nextEl;
+for (el = leafList; el != NULL; el = nextEl)
+   {
+   nextEl = el->next;
+   if (nextEl == NULL)
+       break;
+   struct bioExpVector *bio1 = el->val;
+   struct bioExpVector *bio2 = nextEl->val;
+   double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL);
+   total += distance;
+   }
+
+/* Loop through list a second time to generate actual colors. */
+double soFar = 0;
+for (el = leafList; el != NULL; el = nextEl)
+   {
+   nextEl = el->next;
+   if (nextEl == NULL)
+       break;
+   struct bioExpVector *bio1 = el->val;
+   struct bioExpVector *bio2 = nextEl->val;
+   double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL);
+   soFar += distance;
+   double normalized = soFar/total;
+   bio2->color = saturatedRainbowAtPos(normalized * purplePos);
+   }
+
+/* Set first color to correspond to 0, since not set in above loop */
+struct bioExpVector *bio = leafList->val;
+bio->color = saturatedRainbowAtPos(0);
+}
+
+void expData(char *matrixFile, char *nameFile, char *outFile, bool forceLayout, int normConstant, int cgConstant)
 /* Read matrix and names into a list of bioExpVectors, run hacTree to
  * associate them, and write output. */
 {
 struct bioExpVector *list = bioExpVectorListFromFile(matrixFile);
 FILE *f = mustOpen(outFile,"w");
 struct lm *localMem = lmInit(0);
 fillInNames(list, nameFile);
 struct hacTree *clusters = hacTreeFromItems((struct slList *)list, localMem,
 					    slBioExpVectorDistance, slBioExpVectorMerge, NULL, NULL);
-//printJson(f,clusters);
-//printSlBioExpVectorTree(f,clusters);
-printNestedJson(f,clusters);
+struct slRef *orderedList = getOrderedLeafList(clusters);
+colorLeaves(orderedList);
+if (forceLayout)
+    printForceLayoutJson(normConstant,f,clusters);
+if (!clForceLayout)
+    printHierarchicalJson(f, clusters, normConstant, cgConstant);
 }
 
 int main(int argc, char *argv[])
 /* Process command line. */
 {
 optionInit(&argc, argv, options);
+clForceLayout = optionExists("forceLayout");
+clNormConstant = optionInt("normConstant", clNormConstant);
+clCgConstant = optionInt("cgConstant", clCgConstant);
 if (argc != 4)
     usage();
-expData(argv[1], argv[2], argv[3]);
+expData(argv[1], argv[2], argv[3], clForceLayout, clNormConstant, clCgConstant);
 return 0;
 }