93cdd24ca26274f6283c9b9dd4938e95aa1260e0
ceisenhart
  Tue Jun 16 17:06:59 2015 -0700
Fixed the program up a bit, documented and removed some unecessary options

diff --git src/hg/expMatrixToJson/expMatrixToJson.c src/hg/expMatrixToJson/expMatrixToJson.c
index 0f3d479..e180bd5 100644
--- src/hg/expMatrixToJson/expMatrixToJson.c
+++ src/hg/expMatrixToJson/expMatrixToJson.c
@@ -1,577 +1,580 @@
-/* expData -  Takes in GNF expression data, organizes it using a hierarchical agglomerative clustering algorithm. The output defaults to a hierarchichal .json format, with two additional options. */
+/* expData -  Takes in an expression matrix and clusters it using a hierarchical agglomerative clustering algorithm. The output defaults to a hierarchichal .json format, with two additional options. */
 #include "common.h"
 #include "linefile.h"
 #include "hash.h"
 #include "options.h"
 #include "obscure.h"
 #include "memalloc.h"
 #include "jksql.h"
 #include "expData.h"
 #include "sqlList.h"
 #include "hacTree.h"
 #include "rainbow.h" 
 
-/* Visually the nodes will be assigned a color corresponding to a range of sizes. 
- * This constant dictates how many colors will be displayed (1-20).  */
-int clCgConstant = 20;
-/* A normalizing constant for the distances, this corresponds to 
- * the size of the nodes in the standard output and the link distance in the forceLayout output*/
-int clThreads = 10; // The number of threads to run with the multiThreads option
-int clNormConstant = 99; 
 boolean clForceLayout = FALSE; // Prints the data in .json format for d3 force layout visualizations
+boolean clCSV = FALSE; // Converts the comma separated matrix into a tab based file. 
+boolean clMultiThreads = FALSE; // Allows the user to run the program with multiple threads, default is off. 
+int clThreads = 10; // The number of threads to run with the multiThreads option
+int clMemLim = 4; // The amount of memeory the program can use, read in Gigabytes. 
 int target = 0;  // Used for the target value in rlinkJson.
 float longest = 0;  // Used to normalize link distances in rlinkJson.
-char* clHacTree = "fromItems";
-char* clDescFile = NULL; 
+char* clDescFile = NULL; // The user can provide a description file 
 
 void usage()
 /* Explain usage and exit. */
 {
 errAbort(
-    "expMatrixToJson -  Takes in an expression matrix and outputs a binary tree clustering the data in .json format.\n"
+    "expMatrixToJson -  Takes in an expression matrix and outputs a binary tree clustering the data.\n"
+    "			The tree is output as a .json file,  a .html file is generated to view the \n"
+    "			tree.  The files are named using the output argument (ex output.json, output.html).\n"
     "usage:\n"
-    "   expMatrixToJson matrix output\n"
+    "   expMatrixToJson [options] matrix output\n"
     "options:\n"
-    "   -forceLayout = bool Prints the output in .json format for d3 forceLayouts\n"
-    "   -normConstant = int Normalizing constant for d3, default is 20. For forceLayout 100 is reccomended \n"
-    "   -cgConstant = int Defines the number of possible colors for nodes, 1 - 20 \n"
+    "    -multiThread    The program will run on multiple threads. \n"
+    "    -forceLayout    Prints the output in .json format for d3 forceLayouts. NOTE no .html file will be \n"
+    "                    generated using this option.\n"
+    "    -CSV    The input matrix is in .csv format. \n"
     "    -threads=int    Sets the thread count for the multiThreads option, default is 10 \n"
-    "   -hacTree = Dictates how the tree is generated;  multiThreads or costlyMerges or fromItems. fromItems is default \n"
-    "   -descFile = The user is providing a description file. The description file must provide a \n"
-    "		description for each cell line in the expression matrix. There should be one \n"
-    "		description per line, starting on the left side of the expression matrix. The \n"
-    "		description will appear over a leaf node when hovered over.\n"
+    "    -memLim=int    Sets the amount of memeory the program can use before aborting. The default is 4G. \n"
+    "    -descFile=string    The user is providing a description file. The description file must provide a \n"
+    "                  description for each cell line in the expression matrix. There should be one description per \n" 
+    "                  line, starting on the left side of the expression matrix. The description will appear over a \n" 
+    "                  leaf node when hovered over.\n"
+    "    -verbose=2    Show basic run stats. \n"
+    "    -verbose=3    Show all run stats. \n" 
     );
 }
 
 /* Command line validation table. */
 static struct optionSpec options[] = {
-   {"normConstant", OPTION_INT},
-   {"cgConstant", OPTION_INT},
-   {"threads", OPTION_INT},
-   {"structuredOutput", OPTION_BOOLEAN},
+   {"multiThread", OPTION_BOOLEAN},
    {"forceLayout", OPTION_BOOLEAN},
-   {"hacTree", OPTION_STRING},
+   {"CSV", OPTION_BOOLEAN},
+   {"threads", OPTION_INT},
+   {"memLim", OPTION_INT},
    {"descFile", OPTION_STRING},
    {NULL, 0},
 };
 
 struct jsonNodeLine
 /* Stores the information for a single json node line */
     {
     struct jsonNodeLine *next;
     char* name;		// the source for a given link
     double distance;	// the distance for a given link
     };
 
 struct jsonLinkLine
 /* Stores the information for a single json link line */
     {
     struct jsonLinkLine *next;
     int source;		// the source for a given link
     int target;		// the target for a given link
     double distance;	// the distance for a given link
     };
 
 struct bioExpVector
 /* Contains expression information for a biosample on many genes. */
     {
     struct bioExpVector *next;
     char *name;	    // name of biosample.
     char *desc;	    // description of biosample. 
     int count;	    // Number of genes we have data for.
     double *vector;   //  An array allocated dynamically.
     struct rgbColor color;  // Color for this one
     int children;   // Number of bioExpVectors used to build the current 
     };
 
 struct bioExpVector *bioExpVectorListFromFile(char *matrixFile)
 // Read a tab-delimited file and return list of bioExpVector.
 {
 int vectorSize = 0;
 struct lineFile *lf = lineFileOpen(matrixFile, TRUE);
 char *line, **row = NULL;
 struct bioExpVector *list = NULL, *el;
 while (lineFileNextReal(lf, &line))    
     {
     if (vectorSize == 0)
         {
 	// Detect first row.
 	vectorSize = chopByWhite(line, NULL, 0);  // counting up
 	AllocArray(row, vectorSize);
 	continue;
 	}
     AllocVar(el);
     AllocArray(el->vector, vectorSize);
     el->count = chopByWhite(line, row, vectorSize);
 //    assert(el->count == vectorSize);
     int i;
     for (i = 0; i < el->count; ++i)
 	el->vector[i] = sqlDouble(row[i]);
     el->children = 1;
     slAddHead(&list, el);
     }
 lineFileClose(&lf);
 slReverse(&list);
 return list;
 }
 
 
 int fillInNames(struct bioExpVector *list, char *nameFile)
 /* Fill in name field from file. */
 {
 struct lineFile *lf = lineFileOpen(nameFile, TRUE);
 char *line;
 struct bioExpVector *el = list;
 int maxSize = 0 ; 
 
 while (lineFileNextReal(lf, &line))
     {
     if (el == NULL)
 	{
 	warn("More names than items in list");
 	break;
 	}
     char *fields[2];
     if (strlen(line) > maxSize) maxSize = strlen(line); 
     int fieldCount = chopTabs(line, fields);
     if (fieldCount >= 1)
        {
        el->name = cloneString(fields[0]);
        if (fieldCount >= 2)
            el->desc = cloneString(fields[1]);
        else
            el->desc = cloneString("n/a");
        }
 
     el = el->next;
     }
 
 if (el != NULL)
     errAbort("More items in matrix file than %s", nameFile);
 
 lineFileClose(&lf);
 return maxSize; 
 }
 
 void printJsonNodeLine(FILE *f, struct jsonNodeLine *node)
 {
 fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ",");
 fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "},");
 }
 
 void printEndJsonNodeLine(FILE *f, struct jsonNodeLine *node)
 {
 fprintf(f,"    %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ",");
 fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "}");
 }
 
 void printJsonLinkLine(FILE *f, struct jsonLinkLine *links)
 /* Prints out a single json link line */
 {
 fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", links->source, ",");
 fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ",");  
 fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "},");  
 }
 
 void printEndJsonLinkLine(FILE *f, struct jsonLinkLine *links)
 /* Prints out a single json link line */
 {
 fprintf(f,"    %s\"%s\"%s%d%s", "{","source", ":", links->source, ",");
 fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ",");  
 fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "}");  
 }
 
 void rPrintNodes(FILE *f, struct hacTree *tree, struct jsonNodeLine *nodes)
 // Recursively adds the node information to a linked list
 {
 char *tissue = ((struct bioExpVector *)(tree->itemOrCluster))->name;
 if (tree->childDistance != 0) 
     // If the current object is a node then we assign no name.
     {
     struct jsonNodeLine *nNode;
     AllocVar(nNode);
     nNode->name = " ";
     nNode->distance = tree->childDistance;
     slAddHead(nodes, nNode); // add the node
     }
 else {
     // Otherwise the current object is a leaf, and the tissue name is printed. 
     struct jsonNodeLine *lNode;
     AllocVar(lNode);
     lNode->name = tissue;
     lNode->distance = tree->childDistance;
     slAddHead(nodes, lNode); // add the node
     }
 
 if (tree->left == NULL && tree->right == NULL)
     // Stop at the last element
     { 
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
 rPrintNodes(f, tree->left, nodes);
 rPrintNodes(f, tree->right, nodes);
 }
 
 
-void rPrintLinks(int normConstant, FILE *f, struct hacTree *tree, int source, struct jsonLinkLine *links)
+void rPrintLinks(FILE *f, struct hacTree *tree, int source, struct jsonLinkLine *links)
 // Recursively loadslist->children = 0 ;  the link information into a linked list
 {
 if (tree->childDistance > longest)
     // the first distance will be the longest, and is used for normalization
     longest = tree->childDistance;
 if (tree->left == NULL && tree->right == NULL)
     // Stop at the last element
     { 
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
 
 // Left recursion.
 struct jsonLinkLine *lLink;
 AllocVar(lLink);
 ++target;
 lLink->source = target - 1;	 // The source and target are always ofset by 1. 
 lLink->target = target;
-lLink->distance = normConstant*(tree->childDistance/longest);	//Calculates the link distance
+lLink->distance = 100*(tree->childDistance/longest);	//Calculates the link distance
 source = target;		// Prepares the source for the right recursion. 
 slAddHead(links, lLink); 	// Add the link
-rPrintLinks(normConstant,f, tree->left, source, links);
+rPrintLinks(f, tree->left, source, links);
 
 // Right recursion.
 struct jsonLinkLine *rLink;
 AllocVar(rLink);
 ++target;
 rLink->source = source - 1;	// The source is dependent on the last target of the left recursion
 rLink->target = target;	
-rLink->distance = normConstant*(tree->childDistance/longest);
+rLink->distance = 100*(tree->childDistance/longest);
 slAddHead(links, rLink);		// Add the link
-rPrintLinks(normConstant,f, tree->right, ++source, links);
+rPrintLinks(f, tree->right, ++source, links);
 }
 
-void printForceLayoutJson(int normConstant, FILE *f, struct hacTree *tree)
+void printForceLayoutJson(FILE *f, struct hacTree *tree)
 // Prints the hacTree into a .json file format for d3 forceLayout visualizations.
 {
 // Basic json template for d3 visualizations
 fprintf(f,"%s\n", "{");
 fprintf(f,"  \"%s\"%s\n", "nodes", ":[" );
 
 // Print the nodes
 struct jsonNodeLine *nodes;
 AllocVar(nodes);
 rPrintNodes(f, tree, nodes);
 slReverse(&nodes);
 int nodeCount = slCount(nodes);
 int j;
 for (j = 0; j < nodeCount -1; ++j)
    // iterate through the linked nodelist printing nodes
    {
    if (j == nodeCount - 2)
        printEndJsonNodeLine(f, nodes);
    else
        {
        printJsonNodeLine(f, nodes);
        nodes = nodes -> next;
        }
    }
 fprintf(f,  "%s\n", "],");
 fprintf(f,  "\"%s\"%s\n", "links", ":[" );
 
 // Print the links
 struct jsonLinkLine *links;
 AllocVar(links);
-rPrintLinks(normConstant,f,tree, 0, links);
+rPrintLinks(f,tree, 0, links);
 slReverse(&links);
 int linkCount = slCount(links);
 int i;
 for (i = 0; i< linkCount -1; ++i)
    // iterate through the linked linklist printing links
    {
    if (i == linkCount - 2)
        printEndJsonLinkLine(f, links);
    else
        {
        printJsonLinkLine(f, links);
        links = links -> next;
        }
    }
 fprintf(f,"  %s\n", "]");
 fprintf(f,"%s\n", "}");
 }
 
 
 static void rAddLeaf(struct hacTree *tree, struct slRef **pList)
 /* Recursively add leaf to list */
 {
 if (tree->left == NULL && tree->right == NULL)
     refAdd(pList, tree->itemOrCluster);
 else
     {
     rAddLeaf(tree->left, pList);
     rAddLeaf(tree->right, pList);
     }
 }
 
 struct slRef *getOrderedLeafList(struct hacTree *tree)
 /* Return list of references to bioExpVectors from leaf nodes
  * ordered by position in hacTree */
 {
 struct slRef *leafList = NULL;
 rAddLeaf(tree, &leafList);
 slReverse(&leafList);
 return leafList;
 }
 
-static void rPrintHierarchicalJson(FILE *f, struct hacTree *tree, int level, double distance,
-		int normConstant, int cgConstant)
+static void rPrintHierarchicalJson(FILE *f, struct hacTree *tree, int level, double distance)
 /* Recursively prints out the elements of the hierarchical .json file. */
 {
 struct bioExpVector *bio = (struct bioExpVector *)tree->itemOrCluster;
 char *tissue = bio->name;
 struct rgbColor colors = bio->color;
 if (tree->childDistance > longest)
     // the first distance will be the longest, and is used for normalization
     longest = tree->childDistance;
 int i;
 for (i = 0;  i < level;  i++)
     fputc(' ', f); // correct spacing for .json format
+
 if (tree->left == NULL && tree->right == NULL)
+    // Print the leaf nodes
     {
-    // Prints out the leaf objects
-    //fprintf(f, "{\"%s\"%s \"%s\"%s\"%s\"%s %f %s\"%s\"%s \"rgb(%i,%i,%i)\"}", "name", ":", tissue, ", ",
-    //		"similarity", ":", bio->desc , "," , "colorGroup", ":", colors.r, colors.g, colors.b);
+    if (bio->desc)
 	fprintf(f, "{\"name\":\"%s\",\"distance\":\"%s\",\"colorGroup\":\"rgb(%i,%i,%i)\"}", tissue, bio->desc, colors.r, colors.g, colors.b); 
+    else
+	fprintf(f, "{\"name\":\"%s\",\"distance\":\"%s\",\"colorGroup\":\"rgb(%i,%i,%i)\"}", tissue, " ", colors.r, colors.g, colors.b); 
     return;
     }
 else if (tree->left == NULL || tree->right == NULL)
     errAbort("\nHow did we get a node with one NULL kid??");
 
 // Prints out the node object and opens a new children block
 fprintf(f, "{\"%s\"%s \"%s\"%s", "name", ":", " ", ",");
 fprintf(f, "\"colorGroup\": \"rgb(%i,%i,%i)\",", colors.r, colors.g, colors.b );
 distance = tree->childDistance/longest; 
 if (distance != distance) distance = 0;
-fprintf(f, "\"%s\"%s \"%f\"%s\n", "distance", ":", (1 + normConstant * (distance)), ",");
+fprintf(f, "\"%s\"%s \"%f\"%s\n", "distance", ":", 100*distance, ",");
 for (i = 0;  i < level + 1;  i++)
     fputc(' ', f);
 fprintf(f, "\"%s\"%s\n", "children", ": [");
-rPrintHierarchicalJson(f, tree->left, level+1, distance, normConstant, cgConstant);
+rPrintHierarchicalJson(f, tree->left, level+1, distance);
 fputs(",\n", f);
-rPrintHierarchicalJson(f, tree->right, level+1, distance, normConstant, cgConstant);
+rPrintHierarchicalJson(f, tree->right, level+1, distance);
 fputc('\n', f);
 // Closes the children block for node objects
 for (i=0;  i < level + 1;  i++)
     fputc(' ', f);
 fputs("]\n", f);
 for (i = 0;  i < level;  i++)
     fputc(' ', f);
 fputs("}", f);
 }
 
-void printHierarchicalJson(FILE *f, struct hacTree *tree, int normConstant, int cgConstant)
+void printHierarchicalJson(FILE *f, struct hacTree *tree)
 /* Prints out the binary tree into .json format intended for d3
  * hierarchical layouts */
 {
 if (tree == NULL)
     {
     fputs("Empty tree.\n", f);
     return;
     }
 double distance = 0;
-rPrintHierarchicalJson(f, tree, 0, distance, normConstant, cgConstant);
+rPrintHierarchicalJson(f, tree, 0, distance);
 fputc('\n', f);
 }
 
 
 double slBioExpVectorDistance(const struct slList *item1, const struct slList *item2, void *extraData)
-/* Return the absolute difference between the two kids' values. 
- * Designed for HAC tree use*/
+/* Return the absolute difference between the two kids' values. Weight based on how many nodes have been merged
+ * to create the current node.  Designed for HAC tree use*/
 {
-verbose(1,"Calculating Distance...\n");
+verbose(3,"Calculating Distance...\n");
 const struct bioExpVector *kid1 = (const struct bioExpVector *)item1;
 const struct bioExpVector *kid2 = (const struct bioExpVector *)item2;
 int j;
 double diff = 0, sum = 0;
-//float kid1Weight = 0.0, kid2Weight = 0.0;
 float kid1Weight = kid1->children / (float)(kid1->children + kid2->children);
 float kid2Weight = kid2->children / (float)(kid1->children + kid2->children);
-//printf("Kid1 weight is %f kid2 weight is %f \n", kid1Weight, kid2Weight);
-//uglyAbort("%f %f\n", kid1Weight, kid2Weight);
 for (j = 0; j < kid1->count; ++j)
     {
     diff = (kid1Weight*kid1->vector[j]) - (kid2Weight*kid2->vector[j]);
     sum += (diff * diff);
     }
-//printf("%f\n",sqrt(sum));
 return sqrt(sum);
 }
 
 
 struct slList *slBioExpVectorMerge(const struct slList *item1, const struct slList *item2,
 				void *unusedExtraData)
 /* Make a new slPair where the name is the children names concattenated and the 
  * value is the average of kids' values.
  * Designed for HAC tree use*/
 {
-verbose(1,"Merging...\n");
+verbose(3,"Merging...\n");
 const struct bioExpVector *kid1 = (const struct bioExpVector *)item1;
 const struct bioExpVector *kid2 = (const struct bioExpVector *)item2;
 float kid1Weight = kid1->children / (float)(kid1->children + kid2->children);
 float kid2Weight = kid2->children / (float)(kid1->children + kid2->children);
-printf("Kid1weight %g kid2weight %g the sum is %g \n", kid1Weight, kid2Weight, kid1Weight + kid2Weight);
 struct bioExpVector *el;
 AllocVar(el);
 AllocArray(el->vector, kid1->count);
 assert(kid1->count == kid2->count);
 el->count = kid1->count; 
 el->name = catTwoStrings(kid1->name, kid2->name);
 int i;
 for (i = 0; i < el->count; ++i)
     {
     el->vector[i] = (kid1Weight*kid1->vector[i] + kid2Weight*kid2->vector[i]);
     }
 el->children = kid1->children + kid2->children; 
 return (struct slList *)(el);
 }
 
 void colorLeaves(struct slRef *leafList)
 /* Assign colors of rainbow to leaves. */
 {
 /* Loop through list once to figure out total, since we need to
  * normalize */
 float total = 0.0;
 double purplePos = 0.80;
 struct slRef *el, *nextEl;
 for (el = leafList; el != NULL; el = nextEl)
    {
    nextEl = el->next;
    if (nextEl == NULL)
        break;
    struct bioExpVector *bio1 = el->val;
    struct bioExpVector *bio2 = nextEl->val;
    double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL);
    if (distance != distance ) distance = 0;
    total += distance;
     }
 /* Loop through list a second time to generate actual colors. */
 double soFar = 0;
 for (el = leafList; el != NULL; el = nextEl)
    {
    nextEl = el->next;
    if (nextEl == NULL)
        break;
    struct bioExpVector *bio1 = el->val;
    struct bioExpVector *bio2 = nextEl->val;
    double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL);
    if (distance != distance ) distance = 0 ;
    soFar += distance;
    double normalized = soFar/total;
    bio2->color = saturatedRainbowAtPos(normalized * purplePos);
    }
 
 /* Set first color to correspond to 0, since not set in above loop */
 struct bioExpVector *bio = leafList->val;
 bio->color = saturatedRainbowAtPos(0);
 }
 
-void convertInput(char *expMatrix, char *descFile)
+void convertInput(char *expMatrix, char *descFile, bool csv)
 /* Takes in a expression matrix and makes the inputs that this program will use. 
  * Namely a transposed table with the first column removed.  Makes use of system calls
  * to use cut, sed, kent utility rowsToCols, and paste (for descFile option). */
 {
 char cmd1[1024], cmd2[1024];
+if (csv)
+    /* A sed one liner will convert comma separated values into a tab separated values*/ 
+    {
+    char cmd3[1024]; 
+    safef(cmd3, 1024, "sed -i 's/,/\\t/g' %s ",expMatrix);  
+    verbose(2,"%s\n", cmd3);
+    mustSystem(cmd3); 
+    }
 safef(cmd1, 1024, "cat %s | sed '1d' | rowsToCols stdin %s.transposedMatrix", expMatrix, expMatrix); 
-printf("%s\n", cmd1);
+/* Exp matrices are X axis of cell lines and Y axis of transcripts. This causes long Y axis and short
+ * X axis, which are not handled well in C.  The matrix is transposed to get around this issue. */ 
+verbose(2,"%s\n", cmd1);
 mustSystem(cmd1);
+/* Pull out the cell names, and store them in a separate file. This allows the actual data matrix to 
+ * have the first row identify the transcript, then all following rows contain only expression values.
+ * By removing the name before hand the computation was made faster and easier. */ 
 if (descFile) 
     {
     char cmd3[1024]; 
     safef(cmd2, 1024, "rowsToCols %s stdout | cut -f1 | sed \'1d\' > %s.cellNamesTemp", expMatrix, expMatrix); 
     safef(cmd3, 1024, "paste %s.cellNamesTemp %s > %s.cellNames", expMatrix, descFile, expMatrix);
+    verbose(2,"%s\n", cmd2); 
     mustSystem(cmd2);
+    verbose(2,"%s\n", cmd3); 
     mustSystem(cmd3);
     }
 else
     {
     safef(cmd2, 1024, "rowsToCols %s stdout | cut -f1 | sed \'1d\' > %s.cellNames", expMatrix, expMatrix);  
-    printf("%s\n", cmd2); 
+    verbose(2,"%s\n", cmd2); 
     mustSystem(cmd2);
     }
 }
 
 void generateHtml(FILE *outputFile, int nameSize, char* jsonFile)
 // Generates a new .html file for the dendrogram. 
 {
-fprintf(outputFile, "<!DOCTYPE html> <meta charset=\"utf-8\"> <title> Radial Dendrogram</title> <style>  .node circle {   fill: #fff;   stroke: steelblue;   stroke-width: 1.5px; }  .node {   font: 10px sans-serif; }  .link {   fill: none;   stroke: #ccc;	stroke-width: 1.5px; }  .selectedLink{   fill: none;   stroke: #ccc;   stroke-width: 3.0px; }  .selected{   fill: red; }  </style> <body> <script src=\"http://d3js.org/d3.v3.min.js\"></script> <script> var color = d3.scale.category20();  var radius = 1080 / 2;  var cluster = d3.layout.cluster()     .size([360, radius - %i]) ;  var diagonal = d3.svg.diagonal.radial()     .projection(function(d) { return [d.y, d.x / 180 * Math.PI]; });  var svg = d3.select(\"body\").append(\"svg\")     .attr(\"width\", radius * 2)     .attr(\"height\", radius * 2)   .append(\"g\")     .attr(\"transform\", \"translate(\" + radius + \",\" + radius + \")\");  d3.json(\"%s\", function(error, root)", 10+nameSize*5, jsonFile);
+char *pageName = cloneString(jsonFile);
+chopSuffix(pageName);
+fprintf(outputFile, "<!DOCTYPE html> <meta charset=\"utf-8\"> <title> %s Radial Dendrogram</title> <style>  .node circle {   fill: #fff;   stroke: steelblue;   stroke-width: 1.5px; }  .node {   font: 10px sans-serif; }  .link {   fill: none;   stroke: #ccc;	stroke-width: 1.5px; }  .selectedLink{   fill: none;   stroke: #ccc;   stroke-width: 3.0px; }  .selected{   fill: red; }  </style> <body> <script src=\"http://d3js.org/d3.v3.min.js\"></script> <script> var color = d3.scale.category20();  var radius = 1080 / 2;  var cluster = d3.layout.cluster()     .size([360, radius - %i]) ;  var diagonal = d3.svg.diagonal.radial()     .projection(function(d) { return [d.y, d.x / 180 * Math.PI]; });  var svg = d3.select(\"body\").append(\"svg\")     .attr(\"width\", radius * 2)     .attr(\"height\", radius * 2)   .append(\"g\")     .attr(\"transform\", \"translate(\" + radius + \",\" + radius + \")\");  d3.json(\"%s\", function(error, root)", pageName, 10+nameSize*5, jsonFile);
 fprintf(outputFile, "{   var nodes = cluster.nodes(root);    var link = svg.selectAll(\"path.link\")       .data(cluster.links(nodes))     .enter().append(\"path\")       .attr(\"class\", \"link\")       .on(\"click\", function() {               d3.select(\".selectedLink\").classed(\"selectedLink\", false);               d3.select(this).classed(\"selectedLink\",true);       })       .attr(\"d\", diagonal);   var node = svg.selectAll(\"g.node\")       .data(nodes)       .enter().append(\"g\")       .attr(\"class\", \"node\")       .attr(\"transform\", function(d) { return \"rotate(\" + (d.x - 90) + \")translate(\" + d.y + \")\"; })        .on(\"click\", function() {               d3.select(\".selected\").classed(\"selected\", false);               d3.select(this).classed(\"selected\",true);       })       .on(\"mouseover\", function(d) {           var g = d3.select(this);           var info = g.append('text')               .classed('info', true)              .attr('x', 20)              .attr('y', 10)               .attr(\"transform\", function(d) { return \"rotate(\"+ (90 - d.x) +\")\";  })              .text(d.distance);       })       .on(\"mouseout\", function() {                   d3.select(this).select('text.info').remove();          });      node.append(\"circle\")    .attr(\"r\", function (d) {        if (d.name != \" \")       {         return 5;       }       })       .style(\"fill\", function (d) {          if (d.name != \" \") {           return d3.rgb(d.colorGroup);         }         });        node.append(\"circle\")       .attr(\"r\", function(d) {            return d.distance/5;})               .on(\"click\", function() {               d3.select(\".selected\").classed(\"selected\", false);               d3.select(this).classed(\"selected\",true);       })              .style(\"fill\",  \"white\");      node.append(\"text\")       .attr(\"dy\", \".55em\")       .attr(\"text-anchor\", function(d) { return d.x < 180 ? \"start\" : \"end\"; })       .attr(\"transform\", function(d) { return d.x < 180 ? \"translate(8)\" : \"rotate(180)translate(-8)\"; })       .text(function(d) { return d.name; }); });  d3.select(self.frameElement).style(\"height\", radius * 2 + \"px\");  </script>");  
-
 }
 
 
 
-void expData(char *matrixFile, char *outDir, char *descFile, bool forceLayout, int normConstant, int cgConstant)
-//void expData(char *matrixFile, char *nameFile, char *outFile, bool forceLayout, int normConstant, int cgConstant)
+void expData(char *matrixFile, char *outDir, char *descFile)
 /* Read matrix and names into a list of bioExpVectors, run hacTree to
  * associate them, and write output. */
 {
-convertInput(matrixFile, descFile); 
+convertInput(matrixFile, descFile, clCSV); 
 struct bioExpVector *list = bioExpVectorListFromFile(catTwoStrings(matrixFile,".transposedMatrix"));
-uglyf("%lld allocated after bioExpVectorListFromFile\n", (long long)carefulTotalAllocated());
+verbose(2,"%lld allocated after bioExpVectorListFromFile\n", (long long)carefulTotalAllocated());
 FILE *f = mustOpen(catTwoStrings(outDir,".json"),"w");
 struct lm *localMem = lmInit(0);
 int size = fillInNames(list, catTwoStrings(matrixFile,".cellNames"));
-uglyf("The size here is %i\n", size);
-//char *catTwoStrings(char *a, char *b)
 /* Allocate new string that is a concatenation of two strings. */
-uglyf("%lld allocated after fillInNames\n", (long long)carefulTotalAllocated());
 struct hacTree *clusters = NULL;
-if (sameString(clHacTree, "multiThreads"))
+if (clMultiThreads)
     {
     clusters = hacTreeMultiThread(clThreads, (struct slList *)list, localMem,
   					    slBioExpVectorDistance, slBioExpVectorMerge, NULL, NULL);
     }
-/*else if (sameString(clHacTree, "costlyMerges"))
-    {
-    clusters = hacTreeForCostlyMerges((struct slList *)list, localMem,
-						slBioExpVectorDistance, slBioExpVectorMerge, NULL);
-    }*/
-else if (sameString(clHacTree, "fromItems"))
+else
     {
     clusters = hacTreeFromItems((struct slList *)list, localMem,
 						slBioExpVectorDistance, slBioExpVectorMerge, NULL, NULL);
     }
-else 
-    {
-    uglyAbort("Unrecognized input option: %s", clHacTree);
-    }
-//uglyAbort("Made it through the binary tree generation");
 struct slRef *orderedList = getOrderedLeafList(clusters);
 colorLeaves(orderedList);
-if (forceLayout)
-    printForceLayoutJson(normConstant,f,clusters);
-if (!clForceLayout)
-    printHierarchicalJson(f, clusters, normConstant, cgConstant);
+if (clForceLayout)
+    printForceLayoutJson(f,clusters);
+else{
+    printHierarchicalJson(f, clusters);
     FILE *htmlF = mustOpen(catTwoStrings(outDir,".html"),"w");
     generateHtml(htmlF,size,catTwoStrings(outDir,".json")); 
-uglyf("%lld allocated at end\n", (long long)carefulTotalAllocated());
+    }
+// Remove temporary files
+char cleanup[1024];
+safef(cleanup, 1024, "rm %s", catTwoStrings(matrixFile, ".*")); 
+mustSystem(cleanup);
+verbose(2,"%lld allocated at end\n", (long long)carefulTotalAllocated());
 }
 
 int main(int argc, char *argv[])
 /* Process command line. */
 {
 optionInit(&argc, argv, options);
 clForceLayout = optionExists("forceLayout");
-clNormConstant = optionInt("normConstant", clNormConstant);
-clCgConstant = optionInt("cgConstant", clCgConstant);
+clCSV = optionExists("CSV");
+clMultiThreads = optionExists("multiThreads");
 clThreads = optionInt("threads", clThreads);
-clHacTree = optionVal("hacTree", clHacTree);
+clMemLim = optionInt("memLim", clMemLim); 
 clDescFile = optionVal("descFile", clDescFile);
 if (argc != 3)
     usage();
-pushCarefulMemHandler(4L*1024*1024*1024);
-expData(argv[1], argv[2], clDescFile, clForceLayout, clNormConstant, clCgConstant);
+pushCarefulMemHandler(1L*1024*1024*1024*clMemLim);
+expData(argv[1], argv[2], clDescFile);
 return 0;
 }