dc1961d147a7bbc9e94689dc64bf6871c4cad494 ceisenhart Fri Jul 17 09:42:43 2015 -0700 Fixed a bug diff --git src/hg/expMatrixToJson/expMatrixToJson.c src/hg/expMatrixToJson/expMatrixToJson.c index e180bd5..b9e3989 100644 --- src/hg/expMatrixToJson/expMatrixToJson.c +++ src/hg/expMatrixToJson/expMatrixToJson.c @@ -1,580 +1,580 @@ /* expData - Takes in an expression matrix and clusters it using a hierarchical agglomerative clustering algorithm. The output defaults to a hierarchichal .json format, with two additional options. */ #include "common.h" #include "linefile.h" #include "hash.h" #include "options.h" #include "obscure.h" #include "memalloc.h" #include "jksql.h" #include "expData.h" #include "sqlList.h" #include "hacTree.h" #include "rainbow.h" boolean clForceLayout = FALSE; // Prints the data in .json format for d3 force layout visualizations boolean clCSV = FALSE; // Converts the comma separated matrix into a tab based file. boolean clMultiThreads = FALSE; // Allows the user to run the program with multiple threads, default is off. int clThreads = 10; // The number of threads to run with the multiThreads option int clMemLim = 4; // The amount of memeory the program can use, read in Gigabytes. int target = 0; // Used for the target value in rlinkJson. float longest = 0; // Used to normalize link distances in rlinkJson. char* clDescFile = NULL; // The user can provide a description file void usage() /* Explain usage and exit. */ { errAbort( "expMatrixToJson - Takes in an expression matrix and outputs a binary tree clustering the data.\n" " The tree is output as a .json file, a .html file is generated to view the \n" " tree. The files are named using the output argument (ex output.json, output.html).\n" "usage:\n" " expMatrixToJson [options] matrix output\n" "options:\n" " -multiThread The program will run on multiple threads. \n" " -forceLayout Prints the output in .json format for d3 forceLayouts. NOTE no .html file will be \n" " generated using this option.\n" " -CSV The input matrix is in .csv format. \n" " -threads=int Sets the thread count for the multiThreads option, default is 10 \n" " -memLim=int Sets the amount of memeory the program can use before aborting. The default is 4G. \n" " -descFile=string The user is providing a description file. The description file must provide a \n" " description for each cell line in the expression matrix. There should be one description per \n" " line, starting on the left side of the expression matrix. The description will appear over a \n" " leaf node when hovered over.\n" " -verbose=2 Show basic run stats. \n" " -verbose=3 Show all run stats. \n" ); } /* Command line validation table. */ static struct optionSpec options[] = { {"multiThread", OPTION_BOOLEAN}, {"forceLayout", OPTION_BOOLEAN}, {"CSV", OPTION_BOOLEAN}, {"threads", OPTION_INT}, {"memLim", OPTION_INT}, {"descFile", OPTION_STRING}, {NULL, 0}, }; struct jsonNodeLine /* Stores the information for a single json node line */ { struct jsonNodeLine *next; char* name; // the source for a given link double distance; // the distance for a given link }; struct jsonLinkLine /* Stores the information for a single json link line */ { struct jsonLinkLine *next; int source; // the source for a given link int target; // the target for a given link double distance; // the distance for a given link }; struct bioExpVector /* Contains expression information for a biosample on many genes. */ { struct bioExpVector *next; char *name; // name of biosample. char *desc; // description of biosample. int count; // Number of genes we have data for. double *vector; // An array allocated dynamically. struct rgbColor color; // Color for this one int children; // Number of bioExpVectors used to build the current }; struct bioExpVector *bioExpVectorListFromFile(char *matrixFile) // Read a tab-delimited file and return list of bioExpVector. { int vectorSize = 0; struct lineFile *lf = lineFileOpen(matrixFile, TRUE); char *line, **row = NULL; struct bioExpVector *list = NULL, *el; while (lineFileNextReal(lf, &line)) { if (vectorSize == 0) { // Detect first row. vectorSize = chopByWhite(line, NULL, 0); // counting up AllocArray(row, vectorSize); continue; } AllocVar(el); AllocArray(el->vector, vectorSize); el->count = chopByWhite(line, row, vectorSize); // assert(el->count == vectorSize); int i; for (i = 0; i < el->count; ++i) el->vector[i] = sqlDouble(row[i]); el->children = 1; slAddHead(&list, el); } lineFileClose(&lf); slReverse(&list); return list; } int fillInNames(struct bioExpVector *list, char *nameFile) /* Fill in name field from file. */ { struct lineFile *lf = lineFileOpen(nameFile, TRUE); char *line; struct bioExpVector *el = list; int maxSize = 0 ; while (lineFileNextReal(lf, &line)) { if (el == NULL) { warn("More names than items in list"); break; } char *fields[2]; if (strlen(line) > maxSize) maxSize = strlen(line); int fieldCount = chopTabs(line, fields); if (fieldCount >= 1) { el->name = cloneString(fields[0]); if (fieldCount >= 2) el->desc = cloneString(fields[1]); else - el->desc = cloneString("n/a"); + el->desc = cloneString("0"); } el = el->next; } if (el != NULL) errAbort("More items in matrix file than %s", nameFile); lineFileClose(&lf); return maxSize; } void printJsonNodeLine(FILE *f, struct jsonNodeLine *node) { fprintf(f," %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ","); fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "},"); } void printEndJsonNodeLine(FILE *f, struct jsonNodeLine *node) { fprintf(f," %s\"%s\"%s\"%s\"%s", "{","name", ":", node->name, ","); fprintf(f,"\"%s\"%s%0.31f%s\n", "y", ":" , node->distance, "}"); } void printJsonLinkLine(FILE *f, struct jsonLinkLine *links) /* Prints out a single json link line */ { fprintf(f," %s\"%s\"%s%d%s", "{","source", ":", links->source, ","); fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ","); fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "},"); } void printEndJsonLinkLine(FILE *f, struct jsonLinkLine *links) /* Prints out a single json link line */ { fprintf(f," %s\"%s\"%s%d%s", "{","source", ":", links->source, ","); fprintf(f,"\"%s\"%s%d%s", "target", ":" , links->target, ","); fprintf(f,"\"%s\"%s%0.31f%s\n", "distance", ":" , links->distance , "}"); } void rPrintNodes(FILE *f, struct hacTree *tree, struct jsonNodeLine *nodes) // Recursively adds the node information to a linked list { char *tissue = ((struct bioExpVector *)(tree->itemOrCluster))->name; if (tree->childDistance != 0) // If the current object is a node then we assign no name. { struct jsonNodeLine *nNode; AllocVar(nNode); nNode->name = " "; nNode->distance = tree->childDistance; slAddHead(nodes, nNode); // add the node } else { // Otherwise the current object is a leaf, and the tissue name is printed. struct jsonNodeLine *lNode; AllocVar(lNode); lNode->name = tissue; lNode->distance = tree->childDistance; slAddHead(nodes, lNode); // add the node } if (tree->left == NULL && tree->right == NULL) // Stop at the last element { return; } else if (tree->left == NULL || tree->right == NULL) errAbort("\nHow did we get a node with one NULL kid??"); rPrintNodes(f, tree->left, nodes); rPrintNodes(f, tree->right, nodes); } void rPrintLinks(FILE *f, struct hacTree *tree, int source, struct jsonLinkLine *links) // Recursively loadslist->children = 0 ; the link information into a linked list { if (tree->childDistance > longest) // the first distance will be the longest, and is used for normalization longest = tree->childDistance; if (tree->left == NULL && tree->right == NULL) // Stop at the last element { return; } else if (tree->left == NULL || tree->right == NULL) errAbort("\nHow did we get a node with one NULL kid??"); // Left recursion. struct jsonLinkLine *lLink; AllocVar(lLink); ++target; lLink->source = target - 1; // The source and target are always ofset by 1. lLink->target = target; lLink->distance = 100*(tree->childDistance/longest); //Calculates the link distance source = target; // Prepares the source for the right recursion. slAddHead(links, lLink); // Add the link rPrintLinks(f, tree->left, source, links); // Right recursion. struct jsonLinkLine *rLink; AllocVar(rLink); ++target; rLink->source = source - 1; // The source is dependent on the last target of the left recursion rLink->target = target; rLink->distance = 100*(tree->childDistance/longest); slAddHead(links, rLink); // Add the link rPrintLinks(f, tree->right, ++source, links); } void printForceLayoutJson(FILE *f, struct hacTree *tree) // Prints the hacTree into a .json file format for d3 forceLayout visualizations. { // Basic json template for d3 visualizations fprintf(f,"%s\n", "{"); fprintf(f," \"%s\"%s\n", "nodes", ":[" ); // Print the nodes struct jsonNodeLine *nodes; AllocVar(nodes); rPrintNodes(f, tree, nodes); slReverse(&nodes); int nodeCount = slCount(nodes); int j; for (j = 0; j < nodeCount -1; ++j) // iterate through the linked nodelist printing nodes { if (j == nodeCount - 2) printEndJsonNodeLine(f, nodes); else { printJsonNodeLine(f, nodes); nodes = nodes -> next; } } fprintf(f, "%s\n", "],"); fprintf(f, "\"%s\"%s\n", "links", ":[" ); // Print the links struct jsonLinkLine *links; AllocVar(links); rPrintLinks(f,tree, 0, links); slReverse(&links); int linkCount = slCount(links); int i; for (i = 0; i< linkCount -1; ++i) // iterate through the linked linklist printing links { if (i == linkCount - 2) printEndJsonLinkLine(f, links); else { printJsonLinkLine(f, links); links = links -> next; } } fprintf(f," %s\n", "]"); fprintf(f,"%s\n", "}"); } static void rAddLeaf(struct hacTree *tree, struct slRef **pList) /* Recursively add leaf to list */ { if (tree->left == NULL && tree->right == NULL) refAdd(pList, tree->itemOrCluster); else { rAddLeaf(tree->left, pList); rAddLeaf(tree->right, pList); } } struct slRef *getOrderedLeafList(struct hacTree *tree) /* Return list of references to bioExpVectors from leaf nodes * ordered by position in hacTree */ { struct slRef *leafList = NULL; rAddLeaf(tree, &leafList); slReverse(&leafList); return leafList; } static void rPrintHierarchicalJson(FILE *f, struct hacTree *tree, int level, double distance) /* Recursively prints out the elements of the hierarchical .json file. */ { struct bioExpVector *bio = (struct bioExpVector *)tree->itemOrCluster; char *tissue = bio->name; struct rgbColor colors = bio->color; if (tree->childDistance > longest) // the first distance will be the longest, and is used for normalization longest = tree->childDistance; int i; for (i = 0; i < level; i++) fputc(' ', f); // correct spacing for .json format if (tree->left == NULL && tree->right == NULL) // Print the leaf nodes { if (bio->desc) fprintf(f, "{\"name\":\"%s\",\"distance\":\"%s\",\"colorGroup\":\"rgb(%i,%i,%i)\"}", tissue, bio->desc, colors.r, colors.g, colors.b); else fprintf(f, "{\"name\":\"%s\",\"distance\":\"%s\",\"colorGroup\":\"rgb(%i,%i,%i)\"}", tissue, " ", colors.r, colors.g, colors.b); return; } else if (tree->left == NULL || tree->right == NULL) errAbort("\nHow did we get a node with one NULL kid??"); // Prints out the node object and opens a new children block fprintf(f, "{\"%s\"%s \"%s\"%s", "name", ":", " ", ","); fprintf(f, "\"colorGroup\": \"rgb(%i,%i,%i)\",", colors.r, colors.g, colors.b ); distance = tree->childDistance/longest; if (distance != distance) distance = 0; fprintf(f, "\"%s\"%s \"%f\"%s\n", "distance", ":", 100*distance, ","); for (i = 0; i < level + 1; i++) fputc(' ', f); fprintf(f, "\"%s\"%s\n", "children", ": ["); rPrintHierarchicalJson(f, tree->left, level+1, distance); fputs(",\n", f); rPrintHierarchicalJson(f, tree->right, level+1, distance); fputc('\n', f); // Closes the children block for node objects for (i=0; i < level + 1; i++) fputc(' ', f); fputs("]\n", f); for (i = 0; i < level; i++) fputc(' ', f); fputs("}", f); } void printHierarchicalJson(FILE *f, struct hacTree *tree) /* Prints out the binary tree into .json format intended for d3 * hierarchical layouts */ { if (tree == NULL) { fputs("Empty tree.\n", f); return; } double distance = 0; rPrintHierarchicalJson(f, tree, 0, distance); fputc('\n', f); } double slBioExpVectorDistance(const struct slList *item1, const struct slList *item2, void *extraData) /* Return the absolute difference between the two kids' values. Weight based on how many nodes have been merged * to create the current node. Designed for HAC tree use*/ { verbose(3,"Calculating Distance...\n"); const struct bioExpVector *kid1 = (const struct bioExpVector *)item1; const struct bioExpVector *kid2 = (const struct bioExpVector *)item2; int j; double diff = 0, sum = 0; float kid1Weight = kid1->children / (float)(kid1->children + kid2->children); float kid2Weight = kid2->children / (float)(kid1->children + kid2->children); for (j = 0; j < kid1->count; ++j) { diff = (kid1Weight*kid1->vector[j]) - (kid2Weight*kid2->vector[j]); sum += (diff * diff); } return sqrt(sum); } struct slList *slBioExpVectorMerge(const struct slList *item1, const struct slList *item2, void *unusedExtraData) /* Make a new slPair where the name is the children names concattenated and the * value is the average of kids' values. * Designed for HAC tree use*/ { verbose(3,"Merging...\n"); const struct bioExpVector *kid1 = (const struct bioExpVector *)item1; const struct bioExpVector *kid2 = (const struct bioExpVector *)item2; float kid1Weight = kid1->children / (float)(kid1->children + kid2->children); float kid2Weight = kid2->children / (float)(kid1->children + kid2->children); struct bioExpVector *el; AllocVar(el); AllocArray(el->vector, kid1->count); assert(kid1->count == kid2->count); el->count = kid1->count; el->name = catTwoStrings(kid1->name, kid2->name); int i; for (i = 0; i < el->count; ++i) { el->vector[i] = (kid1Weight*kid1->vector[i] + kid2Weight*kid2->vector[i]); } el->children = kid1->children + kid2->children; return (struct slList *)(el); } void colorLeaves(struct slRef *leafList) /* Assign colors of rainbow to leaves. */ { /* Loop through list once to figure out total, since we need to * normalize */ float total = 0.0; double purplePos = 0.80; struct slRef *el, *nextEl; for (el = leafList; el != NULL; el = nextEl) { nextEl = el->next; if (nextEl == NULL) break; struct bioExpVector *bio1 = el->val; struct bioExpVector *bio2 = nextEl->val; double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL); if (distance != distance ) distance = 0; total += distance; } /* Loop through list a second time to generate actual colors. */ double soFar = 0; for (el = leafList; el != NULL; el = nextEl) { nextEl = el->next; if (nextEl == NULL) break; struct bioExpVector *bio1 = el->val; struct bioExpVector *bio2 = nextEl->val; double distance = slBioExpVectorDistance((struct slList *)bio1, (struct slList *)bio2, NULL); if (distance != distance ) distance = 0 ; soFar += distance; double normalized = soFar/total; bio2->color = saturatedRainbowAtPos(normalized * purplePos); } /* Set first color to correspond to 0, since not set in above loop */ struct bioExpVector *bio = leafList->val; bio->color = saturatedRainbowAtPos(0); } void convertInput(char *expMatrix, char *descFile, bool csv) /* Takes in a expression matrix and makes the inputs that this program will use. * Namely a transposed table with the first column removed. Makes use of system calls * to use cut, sed, kent utility rowsToCols, and paste (for descFile option). */ { char cmd1[1024], cmd2[1024]; if (csv) /* A sed one liner will convert comma separated values into a tab separated values*/ { char cmd3[1024]; safef(cmd3, 1024, "sed -i 's/,/\\t/g' %s ",expMatrix); verbose(2,"%s\n", cmd3); mustSystem(cmd3); } safef(cmd1, 1024, "cat %s | sed '1d' | rowsToCols stdin %s.transposedMatrix", expMatrix, expMatrix); /* Exp matrices are X axis of cell lines and Y axis of transcripts. This causes long Y axis and short * X axis, which are not handled well in C. The matrix is transposed to get around this issue. */ verbose(2,"%s\n", cmd1); mustSystem(cmd1); /* Pull out the cell names, and store them in a separate file. This allows the actual data matrix to * have the first row identify the transcript, then all following rows contain only expression values. * By removing the name before hand the computation was made faster and easier. */ if (descFile) { char cmd3[1024]; safef(cmd2, 1024, "rowsToCols %s stdout | cut -f1 | sed \'1d\' > %s.cellNamesTemp", expMatrix, expMatrix); safef(cmd3, 1024, "paste %s.cellNamesTemp %s > %s.cellNames", expMatrix, descFile, expMatrix); verbose(2,"%s\n", cmd2); mustSystem(cmd2); verbose(2,"%s\n", cmd3); mustSystem(cmd3); } else { safef(cmd2, 1024, "rowsToCols %s stdout | cut -f1 | sed \'1d\' > %s.cellNames", expMatrix, expMatrix); verbose(2,"%s\n", cmd2); mustSystem(cmd2); } } void generateHtml(FILE *outputFile, int nameSize, char* jsonFile) // Generates a new .html file for the dendrogram. { char *pageName = cloneString(jsonFile); chopSuffix(pageName); fprintf(outputFile, " %s Radial Dendrogram "); } void expData(char *matrixFile, char *outDir, char *descFile) /* Read matrix and names into a list of bioExpVectors, run hacTree to * associate them, and write output. */ { convertInput(matrixFile, descFile, clCSV); struct bioExpVector *list = bioExpVectorListFromFile(catTwoStrings(matrixFile,".transposedMatrix")); verbose(2,"%lld allocated after bioExpVectorListFromFile\n", (long long)carefulTotalAllocated()); FILE *f = mustOpen(catTwoStrings(outDir,".json"),"w"); struct lm *localMem = lmInit(0); int size = fillInNames(list, catTwoStrings(matrixFile,".cellNames")); /* Allocate new string that is a concatenation of two strings. */ struct hacTree *clusters = NULL; if (clMultiThreads) { clusters = hacTreeMultiThread(clThreads, (struct slList *)list, localMem, slBioExpVectorDistance, slBioExpVectorMerge, NULL, NULL); } else { clusters = hacTreeFromItems((struct slList *)list, localMem, slBioExpVectorDistance, slBioExpVectorMerge, NULL, NULL); } struct slRef *orderedList = getOrderedLeafList(clusters); colorLeaves(orderedList); if (clForceLayout) printForceLayoutJson(f,clusters); else{ printHierarchicalJson(f, clusters); FILE *htmlF = mustOpen(catTwoStrings(outDir,".html"),"w"); generateHtml(htmlF,size,catTwoStrings(outDir,".json")); } // Remove temporary files char cleanup[1024]; safef(cleanup, 1024, "rm %s", catTwoStrings(matrixFile, ".*")); mustSystem(cleanup); verbose(2,"%lld allocated at end\n", (long long)carefulTotalAllocated()); } int main(int argc, char *argv[]) /* Process command line. */ { optionInit(&argc, argv, options); clForceLayout = optionExists("forceLayout"); clCSV = optionExists("CSV"); clMultiThreads = optionExists("multiThreads"); clThreads = optionInt("threads", clThreads); clMemLim = optionInt("memLim", clMemLim); clDescFile = optionVal("descFile", clDescFile); if (argc != 3) usage(); pushCarefulMemHandler(1L*1024*1024*1024*clMemLim); expData(argv[1], argv[2], clDescFile); return 0; }