58f94bd4988cf7a97cf2dd4222e6cd62513a88ed
galt
  Wed Apr 19 17:44:24 2017 -0700
Adding free opensource fast SHA1 from git. This is primarily inteded for hashing to quickly checking if files are identical. It can run quickly on a block of RAM or on a file. You can get raw binary values or hex string.

diff --git src/lib/gitSha1.c src/lib/gitSha1.c
new file mode 100644
index 0000000..2b1b24d
--- /dev/null
+++ src/lib/gitSha1.c
@@ -0,0 +1,393 @@
+/*
+ * sha1-git.c
+ *  https://svn.aircrack-ng.org/trunk/src/sha1-git.c
+ *
+ * This code is based on the GIT SHA1 Implementation.
+ *
+ * Copyright (C) 2009 Linus Torvalds <torvalds@linux-foundation.org>
+ * Copyright (C) 2009 Nicolas Pitre <nico@cam.org>
+ * Copyright (C) 2009 Junio C Hamano <gitster@pobox.com>
+ * Copyright (C) 2009 Brandon Casey <drafnel@gmail.com>
+ * Copyright (C) 2010 Ramsay Jones <ramsay@ramsay1.demon.co.uk>
+ * Copyright (C) 2012 Carlos Alberto Lopez Perez <clopez@igalia.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ *
+ */
+
+/*
+ * SHA1 routine optimized to do word accesses rather than byte accesses,
+ * and to avoid unnecessary copies into the context array.
+ *
+ * This was initially based on the Mozilla SHA1 implementation, although
+ * none of the original Mozilla code remains.
+ */
+
+/* this is only to get definitions for memcpy(), ntohl() and htonl() */
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <arpa/inet.h>
+#include "hex.h"
+#include "common.h"
+#include "gitSha1.h"
+
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+
+/*
+ * Force usage of rol or ror by selecting the one with the smaller constant.
+ * It _can_ generate slightly smaller code (a constant of 1 is special), but
+ * perhaps more importantly it's possibly faster on any uarch that does a
+ * rotate with a loop.
+ */
+
+#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; })
+#define SHA_ROL(x,n)	SHA_ASM("rol", x, n)
+#define SHA_ROR(x,n)	SHA_ASM("ror", x, n)
+
+#else
+
+#define SHA_ROT(X,l,r)	(((X) << (l)) | ((X) >> (r)))
+#define SHA_ROL(X,n)	SHA_ROT(X,n,32-(n))
+#define SHA_ROR(X,n)	SHA_ROT(X,32-(n),n)
+
+#endif
+
+/*
+ * If you have 32 registers or more, the compiler can (and should)
+ * try to change the array[] accesses into registers. However, on
+ * machines with less than ~25 registers, that won't really work,
+ * and at least gcc will make an unholy mess of it.
+ *
+ * So to avoid that mess which just slows things down, we force
+ * the stores to memory to actually happen (we might be better off
+ * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
+ * suggested by Artur Skawina - that will also make gcc unable to
+ * try to do the silly "optimize away loads" part because it won't
+ * see what the value will be).
+ *
+ * Ben Herrenschmidt reports that on PPC, the C version comes close
+ * to the optimized asm with this (ie on PPC you don't want that
+ * 'volatile', since there are lots of registers).
+ *
+ * On ARM we get the best code generation by forcing a full memory barrier
+ * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
+ * the stack frame size simply explode and performance goes down the drain.
+ */
+
+#if defined(__i386__) || defined(__x86_64__)
+  #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
+#elif defined(__GNUC__) && defined(__arm__)
+  #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
+#else
+  #define setW(x, val) (W(x) = (val))
+#endif
+
+/*
+ * Performance might be improved if the CPU architecture is OK with
+ * unaligned 32-bit loads and a fast ntohl() is available.
+ * Otherwise fall back to byte loads and shifts which is portable,
+ * and is faster on architectures with memory alignment issues.
+ */
+
+#if defined(__i386__) || defined(__x86_64__) || \
+    defined(_M_IX86) || defined(_M_X64) || \
+    defined(__ppc__) || defined(__ppc64__) || \
+    defined(__powerpc__) || defined(__powerpc64__) || \
+    defined(__s390__) || defined(__s390x__)
+
+#define get_be32(p)	ntohl(*(unsigned int *)(p))
+#define put_be32(p, v)	do { *(unsigned int *)(p) = htonl(v); } while (0)
+
+#else
+
+#define get_be32(p)	( \
+	(*((unsigned char *)(p) + 0) << 24) | \
+	(*((unsigned char *)(p) + 1) << 16) | \
+	(*((unsigned char *)(p) + 2) <<  8) | \
+	(*((unsigned char *)(p) + 3) <<  0) )
+#define put_be32(p, v)	do { \
+	unsigned int __v = (v); \
+	*((unsigned char *)(p) + 0) = __v >> 24; \
+	*((unsigned char *)(p) + 1) = __v >> 16; \
+	*((unsigned char *)(p) + 2) = __v >>  8; \
+	*((unsigned char *)(p) + 3) = __v >>  0; } while (0)
+
+#endif
+
+/* This "rolls" over the 512-bit array */
+#define W(x) (array[(x)&15])
+
+/*
+ * Where do we get the source from? The first 16 iterations get it from
+ * the input data, the next mix it from the 512-bit array.
+ */
+#define SHA_SRC(t) get_be32(data + t)
+#define SHA_MIX(t) SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
+
+#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
+	unsigned int TEMP = input(t); setW(t, TEMP); \
+	E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \
+	B = SHA_ROR(B, 2); } while (0)
+
+#define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
+#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
+#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
+#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
+#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
+
+static void blk_SHA1_Block(blk_SHA_CTX *ctx, const unsigned int *data)
+{
+	unsigned int A,B,C,D,E;
+	unsigned int array[16];
+
+	A = ctx->h0;
+	B = ctx->h1;
+	C = ctx->h2;
+	D = ctx->h3;
+	E = ctx->h4;
+
+	/* Round 1 - iterations 0-16 take their input from 'data' */
+	T_0_15( 0, A, B, C, D, E);
+	T_0_15( 1, E, A, B, C, D);
+	T_0_15( 2, D, E, A, B, C);
+	T_0_15( 3, C, D, E, A, B);
+	T_0_15( 4, B, C, D, E, A);
+	T_0_15( 5, A, B, C, D, E);
+	T_0_15( 6, E, A, B, C, D);
+	T_0_15( 7, D, E, A, B, C);
+	T_0_15( 8, C, D, E, A, B);
+	T_0_15( 9, B, C, D, E, A);
+	T_0_15(10, A, B, C, D, E);
+	T_0_15(11, E, A, B, C, D);
+	T_0_15(12, D, E, A, B, C);
+	T_0_15(13, C, D, E, A, B);
+	T_0_15(14, B, C, D, E, A);
+	T_0_15(15, A, B, C, D, E);
+
+	/* Round 1 - tail. Input from 512-bit mixing array */
+	T_16_19(16, E, A, B, C, D);
+	T_16_19(17, D, E, A, B, C);
+	T_16_19(18, C, D, E, A, B);
+	T_16_19(19, B, C, D, E, A);
+
+	/* Round 2 */
+	T_20_39(20, A, B, C, D, E);
+	T_20_39(21, E, A, B, C, D);
+	T_20_39(22, D, E, A, B, C);
+	T_20_39(23, C, D, E, A, B);
+	T_20_39(24, B, C, D, E, A);
+	T_20_39(25, A, B, C, D, E);
+	T_20_39(26, E, A, B, C, D);
+	T_20_39(27, D, E, A, B, C);
+	T_20_39(28, C, D, E, A, B);
+	T_20_39(29, B, C, D, E, A);
+	T_20_39(30, A, B, C, D, E);
+	T_20_39(31, E, A, B, C, D);
+	T_20_39(32, D, E, A, B, C);
+	T_20_39(33, C, D, E, A, B);
+	T_20_39(34, B, C, D, E, A);
+	T_20_39(35, A, B, C, D, E);
+	T_20_39(36, E, A, B, C, D);
+	T_20_39(37, D, E, A, B, C);
+	T_20_39(38, C, D, E, A, B);
+	T_20_39(39, B, C, D, E, A);
+
+	/* Round 3 */
+	T_40_59(40, A, B, C, D, E);
+	T_40_59(41, E, A, B, C, D);
+	T_40_59(42, D, E, A, B, C);
+	T_40_59(43, C, D, E, A, B);
+	T_40_59(44, B, C, D, E, A);
+	T_40_59(45, A, B, C, D, E);
+	T_40_59(46, E, A, B, C, D);
+	T_40_59(47, D, E, A, B, C);
+	T_40_59(48, C, D, E, A, B);
+	T_40_59(49, B, C, D, E, A);
+	T_40_59(50, A, B, C, D, E);
+	T_40_59(51, E, A, B, C, D);
+	T_40_59(52, D, E, A, B, C);
+	T_40_59(53, C, D, E, A, B);
+	T_40_59(54, B, C, D, E, A);
+	T_40_59(55, A, B, C, D, E);
+	T_40_59(56, E, A, B, C, D);
+	T_40_59(57, D, E, A, B, C);
+	T_40_59(58, C, D, E, A, B);
+	T_40_59(59, B, C, D, E, A);
+
+	/* Round 4 */
+	T_60_79(60, A, B, C, D, E);
+	T_60_79(61, E, A, B, C, D);
+	T_60_79(62, D, E, A, B, C);
+	T_60_79(63, C, D, E, A, B);
+	T_60_79(64, B, C, D, E, A);
+	T_60_79(65, A, B, C, D, E);
+	T_60_79(66, E, A, B, C, D);
+	T_60_79(67, D, E, A, B, C);
+	T_60_79(68, C, D, E, A, B);
+	T_60_79(69, B, C, D, E, A);
+	T_60_79(70, A, B, C, D, E);
+	T_60_79(71, E, A, B, C, D);
+	T_60_79(72, D, E, A, B, C);
+	T_60_79(73, C, D, E, A, B);
+	T_60_79(74, B, C, D, E, A);
+	T_60_79(75, A, B, C, D, E);
+	T_60_79(76, E, A, B, C, D);
+	T_60_79(77, D, E, A, B, C);
+	T_60_79(78, C, D, E, A, B);
+	T_60_79(79, B, C, D, E, A);
+
+	ctx->h0 += A;
+	ctx->h1 += B;
+	ctx->h2 += C;
+	ctx->h3 += D;
+	ctx->h4 += E;
+}
+
+void blk_SHA1_Init(blk_SHA_CTX *ctx)
+{
+	ctx->size = 0;
+
+	/* Initialize H with the magic constants (see FIPS180 for constants) */
+	ctx->h0 = 0x67452301;
+	ctx->h1 = 0xefcdab89;
+	ctx->h2 = 0x98badcfe;
+	ctx->h3 = 0x10325476;
+	ctx->h4 = 0xc3d2e1f0;
+}
+
+void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len)
+{
+	unsigned int lenW = ctx->size & 63;
+
+	ctx->size += len;
+
+	/* Read the data into W and process blocks as they get full */
+	if (lenW) {
+		unsigned int left = 64 - lenW;
+		if (len < left)
+			left = len;
+		memcpy(lenW + (char *)ctx->W, data, left);
+		lenW = (lenW + left) & 63;
+		len -= left;
+		data = ((const char *)data + left);
+		if (lenW)
+			return;
+		blk_SHA1_Block(ctx, ctx->W);
+	}
+	while (len >= 64) {
+		blk_SHA1_Block(ctx, data);
+		data = ((const char *)data + 64);
+		len -= 64;
+	}
+	if (len)
+		memcpy(ctx->W, data, len);
+}
+
+void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
+{
+	static const unsigned char pad[64] = { 0x80 };
+	unsigned int padlen[2];
+	int i;
+
+	/* Pad with a binary 1 (ie 0x80), then zeroes, then length */
+	padlen[0] = htonl((uint32_t)(ctx->size >> 29));
+	padlen[1] = htonl((uint32_t)(ctx->size << 3));
+
+	i = ctx->size & 63;
+	blk_SHA1_Update(ctx, pad, 1+ (63 & (55 - i)));
+	blk_SHA1_Update(ctx, padlen, 8);
+
+	/* Output hash */
+	put_be32(hashout + 0*4, ctx->h0);
+	put_be32(hashout + 1*4, ctx->h1);
+	put_be32(hashout + 2*4, ctx->h2);
+	put_be32(hashout + 3*4, ctx->h3);
+	put_be32(hashout + 4*4, ctx->h4);
+}
+
+/* ==================== Routines added by UCSC genome browser ========================= */
+
+char *sha1ToHex(unsigned char hash[20])
+/* Convert binary representation of sha1 to hex string. Do a freeMem on result when done. */
+{
+int hexSize = 20*2;
+char hex[hexSize+1];
+char *h;
+int i;
+for (i = 0, h=hex; i < 20; ++i, h += 2)
+    byteToHex( hash[i], h);  
+hex[hexSize] = 0;
+return cloneString(hex);
+}
+
+
+void sha1ForFile(char *fileName, unsigned char hash[20])
+/* Make sha1 hash from file */
+{
+FILE *fp = fopen (fileName, "r");
+if (!fp) errAbort("missing file %s", fileName);
+#define BS 4096 /* match coreutils */
+blk_SHA_CTX ctx;
+blk_SHA1_Init(&ctx);
+size_t nr;
+char buf[BS];
+while ((nr=fread_unlocked(buf, 1, sizeof(buf), fp)))
+    blk_SHA1_Update(&ctx, buf, nr);
+blk_SHA1_Final(hash, &ctx);
+}
+
+char *sha1HexForFile(char *fileName)
+/* Return Sha1 as Hex string */
+{
+unsigned char hash[20];
+sha1ForFile(fileName, hash);
+return sha1ToHex(hash);
+}
+
+void sha1ForBuf(char *buffer, size_t bufSize, unsigned char hash[20])
+/* Return sha1 hash of buffer. */
+{
+#define BS 4096 /* match coreutils */
+blk_SHA_CTX ctx;
+blk_SHA1_Init(&ctx);
+size_t remaining = bufSize;
+while (remaining > 0)
+    {
+    int bufSize = BS;
+    if (bufSize > remaining)
+	bufSize = remaining;
+    blk_SHA1_Update(&ctx, buffer, bufSize);
+    buffer += bufSize;
+    remaining -= bufSize;
+    }
+blk_SHA1_Final(hash, &ctx);
+}
+
+char *sha1HexForBuf(char *buf, size_t bufSize)
+/* Return Sha1 as Hex string */
+{
+unsigned char hash[20];
+sha1ForBuf(buf, bufSize, hash);
+return sha1ToHex(hash);
+}
+
+char *sha1HexForString(char *string)
+/* Return sha sum of zero-terminated string. */
+{
+return sha1HexForBuf(string, strlen(string));
+}
+