31059016e90d9d6d65e11f55808869efacb8d4e2 kate Tue Apr 10 18:16:17 2018 -0700 Add postscript for ellipse drawing. refs #21109 diff --git src/hg/lib/hvGfx.c src/hg/lib/hvGfx.c index 6ec4c60..97a40a7 100644 --- src/hg/lib/hvGfx.c +++ src/hg/lib/hvGfx.c @@ -388,30 +388,33 @@ } } while (dy < dx); /* gradient negates -> close curves */ } hvGfxLine(hvg, x0,y0, x2,y2, color); /* plot remaining needle to end */ if (y0 > yMax) yMax = y0; return yMax; } int hvGfxCurve(struct hvGfx *hvg, int x0, int y0, int x1, int y1, int x2, int y2, Color color, boolean isDashed) /* Draw a segment of an anti-aliased curve within 3 points (quadratic Bezier) * Return max y value. Optionally alternate dots. * Adapted trivially from code posted at http://members.chello.at/~easyfilter/bresenham.html */ +/* TODO: allow specifying a third point on the line + * P(t) = (1-t)^2 * p0 + 2 * (1-t) * t * p1 + t^2 * p2 + */ { int x = x0-x1, y = y0-y1; double t = x0-2*x1+x2, r; int yMax = 0, yMaxRet = 0; if ((long)x*(x2-x1) > 0) { /* horizontal cut at P4? */ if ((long)y*(y2-y1) > 0) /* vertical cut at P6 too? */ if (fabs((y0-2*y1+y2)/t*x) > abs(y)) { /* which first? */ x0 = x2; x2 = x+x1; y0 = y2; y2 = y+y1; /* swap points */ } /* now horizontal cut at P4 comes first */ t = (x0-x1)/t; r = (1-t)*((1-t)*y0+2.0*t*y1)+t*t*y2; /* By(t=P4) */ t = (x0*x2-x1*x1)*t/(x0-x1); /* gradient dP4/dx=0 */ x = floor(t+0.5); y = floor(r+0.5); r = (y1-y0)*(t-x0)/(x1-x0)+y0; /* intersect P3 | P0 P1 */ yMax = hvGfxCurveSegAA(hvg,x0,y0, x,floor(r+0.5), x,y, color, isDashed); @@ -424,73 +427,15 @@ t = (y0*y2-y1*y1)*t/(y0-y1); /* gradient dP6/dy=0 */ x = floor(r+0.5); y = floor(t+0.5); r = (x1-x0)*(t-y0)/(y1-y0)+x0; /* intersect P6 | P0 P1 */ yMaxRet = hvGfxCurveSegAA(hvg,x0,y0, floor(r+0.5),y, x,y, color, isDashed); if (yMaxRet > yMax) yMax = yMaxRet; r = (x1-x2)*(t-y2)/(y1-y2)+x2; /* intersect P7 | P1 P2 */ x0 = x; x1 = floor(r+0.5); y0 = y1 = y; /* P0 = P6, P1 = P7 */ } yMaxRet = hvGfxCurveSegAA(hvg,x0,y0, x1,y1, x2,y2, color, isDashed); /* remaining part */ if (yMaxRet > yMax) yMax = yMaxRet; return yMax; } -void hvGfxEllipseDraw(struct hvGfx *hvg, int x0, int y0, int x1, int y1, Color color, - int mode, boolean isDashed) -/* Draw an ellipse (or limit to top or bottom) specified by rectangle, using Bresenham algorithm. - * Optionally, alternate dots. - * Point 0 is left, point 1 is top of rectangle - * Adapted trivially from code posted at http://members.chello.at/~easyfilter/bresenham.html - */ -{ - int a = abs(x1-x0), b = abs(y1-y0), b1 = b&1; /* values of diameter */ - long dx = 4*(1-a)*b*b, dy = 4*(b1+1)*a*a; /* error increment */ - long err = dx+dy+b1*a*a, e2; /* error of 1.step */ - - if (x0 > x1) { x0 = x1; x1 += a; } /* if called with swapped points */ - if (y0 > y1) y0 = y1; /* .. exchange them */ - y0 += (b+1)/2; y1 = y0-b1; /* starting pixel */ - a *= 8*a; b1 = 8*b*b; - - int dots = 0; - do { - if (!isDashed || (++dots % 3)) - { - if (mode == ELLIPSE_BOTTOM || mode == ELLIPSE_FULL) - { - hvGfxDot(hvg, x1, y0, color); /* I. Quadrant */ - hvGfxDot(hvg, x0, y0, color); /* II. Quadrant */ - } - if (mode == ELLIPSE_TOP || mode == ELLIPSE_FULL) - { - hvGfxDot(hvg, x0, y1, color); /* III. Quadrant */ - hvGfxDot(hvg, x1, y1, color); /* IV. Quadrant */ - } - } - e2 = 2*err; - if (e2 <= dy) { y0++; y1--; err += dy += a; } /* y step */ - if (e2 >= dx || 2*err > dy) { x0++; x1--; err += dx += b1; } /* x step */ - } while (x0 <= x1); - - while (y0-y1 < b) { /* too early stop of flat ellipses a=1 */ - if (!isDashed && (++dots % 3)) - { - hvGfxDot(hvg, x0-1, y0, color); /* -> finish tip of ellipse */ - hvGfxDot(hvg, x1+1, y0++, color); - hvGfxDot(hvg, x0-1, y1, color); - hvGfxDot(hvg, x1+1, y1--, color); - } - } -} - -void hvGfxEllipse(struct hvGfx *hvg, int x0, int y0, int x1, int y1, Color color) -/* Draw a full ellipse specified by rectangle, using Bresenham algorithm. - * Point 0 is left, point 1 is top of rectangle - * Adapted trivially from code posted at http://members.chello.at/~easyfilter/bresenham.html - */ -{ -hvGfxEllipseDraw(hvg, x0, y0, x1, y1, color, ELLIPSE_FULL, FALSE); -} - -