d7880d4570194bd583252958b3bedce55184ed58
jnavarr5
  Mon Apr 15 09:53:50 2019 -0700
Updating http to http for mm10, uiLinks cronjob.

diff --git src/hg/makeDb/trackDb/qPcrPrimers.html src/hg/makeDb/trackDb/qPcrPrimers.html
index 3a419b6..12c15e0 100644
--- src/hg/makeDb/trackDb/qPcrPrimers.html
+++ src/hg/makeDb/trackDb/qPcrPrimers.html
@@ -1,102 +1,102 @@
 <H2>Description</H2>
 <P>
 This track provides automatically-designed RT-qPCR primers for measuring the abundance of
 human and mouse transcripts using SYBR-based qPCR (qPCR with double-stranded DNA-binding
 reporter dye). The primers were generated by a
 procedure that targets all transcripts and all &quot;possible&quot; exon-exon and intron-exon
 junctions in the human and mouse transcriptomes.
 </P>
 <P>
 Not all consecutive exon-intron-exon triplets generate &quot;possible&quot; primer pairs.
 &quot;Possible&quot; primer pairs are defined as satisfying a set of imposed design rules:
 <OL>
 <LI> The first exon-exon junction is not addressed, to avoid problems related to abortive
 transcription.</LI>
 <LI>Intron length should be more than 800 bp to avoid problems of double products in
 amplification.</LI>
 <LI>Only junction primers are designed: forward and reverse primers must flank the junction.</LI>
 <LI>Melting temperature of the primers should be between 60&deg;C and 63&deg;C (optimally
 60.5&deg;C, according to Breslauer <em>et al.</em>, 1986).</LI>
 <LI>Primer length should be 18-25 bp.</LI>
 <LI>Product size should be 60-125 bp.</LI>
 <LI>Primers are designed first for the intron-exon (pre-mRNA) junctions, and the two best primer
 pairs for each junction are chosen.
 <LI>Then, for the reverse primer of each pair, two options are
 designed for the corresponding forward primer of the exon-exon (mRNA) junction.</LI>
 <LI>The &quot;Primer Mispriming Library&quot; of the <A HREF="http://bioinfo.ut.ee/primer3-0.4.0/"
 TARGET=_blank>primer3</A> software is used: &quot;human&quot; for the human transcriptome and
 &quot;rodent&quot; for the mouse transcriptome.</LI>
 </OL>
 </P>
 <P>
 The track provides easy access to primers for almost all transcripts in the transcriptome,
 eliminating the need for a tedious, error-prone design process.
 </P>
 
 <H2>Methods</H2>
 <p>
 The <a href="../cgi-bin/hgGene?hgg_do_kgMethod=1&org=$organism">UCSC Genes model</a>
 was used as a reference of the gene structure and the
 <A HREF="http://bioinfo.ut.ee/primer3-0.4.0/" TARGET=_blank>primer3</A> software as the design engine. The
 software goes over all possible exon-exon junctions in the transcriptome and applies our design
 rules/parameters to provide two primer pairs for every &quot;possible&quot; intron-exon junction
 and four pairs for every &quot;possible&quot; exon-exon junction.
 </P>
 <H2>Display Conventions</H2>
 <P>
 The primers to amplify pre-mRNA (intron-exon junctions) are shown in <font color="red"><b>red</b>
 </font> and the primers to amplify
 mRNA (exon-exon junctions) in <font color="blue"><b>blue</b></font>. For each pre-mRNA primer pair,
 there are two corresponding mRNA primers (that use the same reverse primer, if possible). Each pair
 has a unique code which stands for the gene name and the junction name. For example, the human pair
 &quot;JAG1_uc002wnw.2_11_1&quot; amplifies pre-mRNA, and the corresponding mRNA primers are
 &quot;JAG1_uc002wnw.2_11_1_1&quot; and &quot;JAG1_uc002wnw.2_11_1_2.&quot;</p>
 <p>
 Using <b>JAG1_uc002wnw.2_11_1_2</b> to illustrate the naming scheme:
 <ul>
 <li><b>JAG1</b> is the gene symbol.
 <li><b>uc002wnw.2</b> is the UCSC Genes identifier of the isoform.
 <li><b>11</b> identifies the exon-intron-exon triplet.
 <li><b>1</b> is the number (1 or 2) of the intron-exon junction (step 7 in the <em>Description</em>
 section above). The names of primer pairs that cover intron-exon junctions
 end here. For the exon-exon junctions that use the same reverse primer, there is one additional
 number.
 <li><b>2</b> is the number (1 or 2) of the exon-exon junction pair (step 8 in the
 <em>Description</em> section above).
 </ul>
 <p>
 Clicking on a primer pair
 will take you to a new page with details for that pair. Additional properties for the primer pair,
 including forward and reverse sequence, melting temperature, GC%, and product size, are available
 by clicking on the number next to the instruction &quot;Click here for primer details.&quot;
 There is also a
 <A HREF="http://www.weizmann.ac.il/complex/compphys/software/Amit/primers/batch_query_qpcr_primers.htm"
 TARGET=_blank>batch query website</A> available to download details for a large number of primers.
 </p>
 
 <H2>References</H2>
 <p>
 Breslauer KJ, Frank R, Bl&#246;cker H, Marky LA.
-<a href="http://www.pnas.org/content/83/11/3746" target="_blank">
+<a href="https://www.pnas.org/content/83/11/3746" target="_blank">
 Predicting DNA duplex stability from the base sequence</a>.
 <em>Proc Natl Acad Sci U S A</em>. 1986 Jun;83(11):3746-50.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/3459152" target="_blank">3459152</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC323600/" target="_blank">PMC323600</a>
 </p>
 
 <p>
 Rozen S, Skaletsky H.
 <a href="https://www.ncbi.nlm.nih.gov/pubmed/10547847" target="_blank">
 Primer3 on the WWW for general users and for biologist programmers</a>.
 <em>Methods Mol Biol</em>. 2000;132:365-86.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/10547847" target="_blank">10547847</a>
 </p>
 
 <p>
 Zeisel A, Yitzhaky A, Bossel Ben-Moshe N, Domany E.
 <a href="https://academic.oup.com/bioinformatics/article/29/10/1355/260020/An-accessible-database-
 for-mouse-and-human-whole" target="_blank">
 An accessible database for mouse and human whole transcriptome qPCR primers</a>.
 <em>Bioinformatics</em>. 2013 May 15;29(10):1355-6.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/23539303" target="_blank">23539303</a>
 </p>