d93f47cd567bb70aba94de233054e8b4fae00f7d
braney
  Fri May 29 15:33:58 2020 -0700
remove frameshifts from psls in hgVai

diff --git src/hg/lib/annoGratorGpVar.c src/hg/lib/annoGratorGpVar.c
index 5baccbf..ab8f230 100644
--- src/hg/lib/annoGratorGpVar.c
+++ src/hg/lib/annoGratorGpVar.c
@@ -1,860 +1,861 @@
 /* annoGratorGpVar -- integrate pgSNP or VCF with gene pred and make gpFx predictions */
 
 /* Copyright (C) 2014 The Regents of the University of California 
  * See README in this or parent directory for licensing information. */
 
 #include "annoGratorGpVar.h"
 #include "annoStreamDbPslPlus.h"
 #include "fa.h"
 #include "genbank.h"
 #include "genePred.h"
 #include "hdb.h"
 #include "hgHgvs.h"
 #include "pgSnp.h"
 #include "vcf.h"
 #include "variant.h"
 #include "gpFx.h"
 #include "seqWindow.h"
 #include "trackHub.h"
 #include "twoBit.h"
 #include "variantProjector.h"
 #include "annoGratorQuery.h"
 
 struct annoGratorGpVar
 {
     struct annoGrator grator;	// external annoGrator/annoStreamer interface
     struct lm *lm;		// localmem scratch storage
     struct dyString *dyScratch;	// dyString for local temporary use
     struct annoGratorGpVarFuncFilter *funcFilter; // Which categories of effect should we output?
     enum annoGratorOverlap gpVarOverlapRule;	  // Should we set RJFail if no overlap?
     struct seqWindow *gSeqWin;  // means of fetching genomic sequence for HGVS term generation
     boolean hgvsMakeG;          // Generate genomic (g.) HGVS terms only if this is set
     boolean hgvsMakeCN;         // Generate transcript (n. / c.) HGVS terms only if this is set
     boolean hgvsMakeP;          // Generate protein (p.) HGVS terms only if this is set
     boolean hgvsAddParensToP;   // Add parentheses around predicted protein changes (strict HGVS)
     boolean hgvsBreakDelIns;    // Include deleted sequence (not only ins) e.g. delGGinsAT
     boolean sourceHasFrames;    // True if transcript annotations include exonFrames column
     boolean sourceIsBigGenePred;// True if transcript annotations are from bigGenePred
     boolean sourceIsPslPlus;    // True if transcript annotations are PSL+CDS+seq info
     boolean protLookupInited;   // For looking up protein accessions in genePred-derived HGVS p.
     char *protLookupTable;      // "
     struct hash *protLookupHash;// "
 
     struct variant *(*variantFromRow)(struct annoGratorGpVar *self, struct annoRow *row,
 				      char *refAllele);
     // Translate row from whatever format it is (pgSnp or VCF) into generic variant.
     };
 
 
 static char *aggvAutoSqlStringStart =
 "table genePredWithSO"
 "\"genePred with Sequence Ontology annotation\""
 "(";
 
 static char *aggvAutoSqlStringEnd =
 "string  allele;             \"Allele used to predict functional effect\""
 "string  transcript;         \"ID of affected transcript\""
 "uint    soNumber;           \"Sequence Ontology Number \""
 "uint    detailType;         \"gpFx detail type (1=codingChange, 2=nonCodingExon, 3=intron)\""
 "string  detail0;            \"detail column (per detailType) 0\""
 "string  detail1;            \"detail column (per detailType) 1\""
 "string  detail2;            \"detail column (per detailType) 2\""
 "string  detail3;            \"detail column (per detailType) 3\""
 "string  detail4;            \"detail column (per detailType) 4\""
 "string  detail5;            \"detail column (per detailType) 5\""
 "string  detail6;            \"detail column (per detailType) 6\""
 "string  detail7;            \"detail column (per detailType) 7\""
 "string  detail8;            \"detail column (per detailType) 8\""
 "string  detail9;            \"detail column (per detailType) 9\""
 "string  detail10;           \"detail column (per detailType) 10\""
 "string  hgvsG;              \"HGVS g. term\""
 "string  hgvsCN;             \"HGVS c. or n. term\""
 "string  hgvsP;              \"HGVS p. term\""
 ")";
 
 struct asObject *annoGpVarAsObj(struct asObject *sourceAsObj)
 // Return asObject describing fields of internal source plus the fields we add here.
 {
 struct dyString *gpPlusGpFx = dyStringCreate("%s", aggvAutoSqlStringStart);
 // Translate each column back into autoSql text for combining with new output fields:
 struct asColumn *col;
 for (col = sourceAsObj->columnList;  col != NULL;  col = col->next)
     {
     if (col->fixedSize)
 	dyStringPrintf(gpPlusGpFx, "%s[%d]\t%s;\t\"%s\"",
 		       col->lowType->name, col->fixedSize, col->name, col->comment);
     else if (col->isArray || col->isList)
 	{
 	if (col->linkedSizeName)
 	    dyStringPrintf(gpPlusGpFx, "%s[%s]\t%s;\t\"%s\"",
 			   col->lowType->name, col->linkedSizeName, col->name, col->comment);
 	else
 	    errAbort("Neither col->fixedSize nor col->linkedSizeName given for "
 		     "asObj %s column '%s'",
 		     sourceAsObj->name, col->name);
 	}
     else
 	dyStringPrintf(gpPlusGpFx, "%s\t%s;\t\"%s\"", col->lowType->name, col->name, col->comment);
     }
 dyStringAppend(gpPlusGpFx, aggvAutoSqlStringEnd);
 struct asObject *asObj = asParseText(gpPlusGpFx->string);
 dyStringFree(&gpPlusGpFx);
 return asObj;
 }
 
 static boolean passesFilter(struct annoGratorGpVar *self, struct gpFx *gpFx)
 /* Based on type of effect, should we print this one? */
 {
 struct annoGratorGpVarFuncFilter *filt = self->funcFilter;
 enum soTerm term = gpFx->soNumber;
 if (term == NMD_transcript_variant)
     // This one gets special treatment because gpFx->detailType might still be codingChange:
     return filt->nmdTranscript;
 if (filt->intron && (term == intron_variant || term == complex_transcript_variant))
     return TRUE;
 if (filt->upDownstream && (term == upstream_gene_variant || term == downstream_gene_variant))
     return TRUE;
 if (filt->exonLoss && (term == exon_loss_variant))
     return TRUE;
 if ((filt->exonLoss || filt->cdsNonSyn) && term == transcript_ablation)
     return TRUE;
 if (filt->utr && (term == _5_prime_UTR_variant || term == _3_prime_UTR_variant))
     return TRUE;
 if (filt->cdsSyn && term == synonymous_variant)
     return TRUE;
 if (filt->cdsNonSyn && term != synonymous_variant
     && (gpFx->detailType == codingChange || term == complex_transcript_variant))
     return TRUE;
 if (filt->nonCodingExon && term == non_coding_transcript_exon_variant)
     return TRUE;
 if (filt->splice && (term == splice_donor_variant || term == splice_acceptor_variant ||
 		     term == splice_region_variant))
     return TRUE;
 if (filt->noVariation && term == no_sequence_alteration)
     return TRUE;
 return FALSE;
 }
 
 static char *blankIfNull(char *input)
 {
 if (input == NULL)
     return "";
 
 return input;
 }
 
 static char *uintToString(struct lm *lm, uint num)
 {
 char buffer[10];
 
 safef(buffer,sizeof buffer, "%d", num);
 return lmCloneString(lm, buffer);
 }
 
 static void aggvStringifyGpFx(char **words, struct gpFx *effect, struct lm *lm)
 // turn gpFx structure into array of words
 {
 int count = 0;
 
 words[count++] = lmCloneString(lm, effect->gAllele);
 words[count++] = lmCloneString(lm, blankIfNull(effect->transcript));
 words[count++] = uintToString(lm, effect->soNumber);
 words[count++] = uintToString(lm, effect->detailType);
 int gpFxNumCols = 4;
 
 if (effect->detailType == intron)
     {
     words[count++] = uintToString(lm, effect->details.intron.intronNumber);
     words[count++] = uintToString(lm, effect->details.intron.intronCount);
     }
 else if (effect->detailType == nonCodingExon)
     {
     words[count++] = uintToString(lm, effect->details.nonCodingExon.exonNumber);
     words[count++] = uintToString(lm, effect->details.nonCodingExon.exonCount);
     words[count++] = uintToString(lm, effect->details.nonCodingExon.cDnaPosition);
     words[count++] = lmCloneString(lm, effect->details.nonCodingExon.txRef);
     words[count++] = lmCloneString(lm, effect->details.nonCodingExon.txAlt);
     }
 else if (effect->detailType == codingChange)
     {
     struct codingChange *cc = &(effect->details.codingChange);
     words[count++] = uintToString(lm, cc->exonNumber);
     words[count++] = uintToString(lm, cc->exonCount);
     words[count++] = uintToString(lm, cc->cDnaPosition);
     words[count++] = lmCloneString(lm, cc->txRef);
     words[count++] = lmCloneString(lm, cc->txAlt);
     words[count++] = uintToString(lm, cc->cdsPosition);
     words[count++] = uintToString(lm, cc->pepPosition);
     words[count++] = strUpper(lmCloneString(lm, blankIfNull(cc->aaOld)));
     words[count++] = strUpper(lmCloneString(lm, blankIfNull(cc->aaNew)));
     words[count++] = strUpper(lmCloneString(lm, blankIfNull(cc->codonOld)));
     words[count++] = strUpper(lmCloneString(lm, blankIfNull(cc->codonNew)));
     }
 else if (effect->detailType != none)
     errAbort("annoGratorGpVar: unknown effect type %d", effect->detailType);
 
 // Add max number of columns added in any if clause above
 gpFxNumCols += 9;
 
 while (count < gpFxNumCols)
     words[count++] = "";
 }
 
 struct gpFx *annoGratorGpVarGpFxFromRow(struct annoStreamer *sSelf, struct annoRow *row,
 					struct lm *lm)
 // Turn the string array representation back into a real gpFx.
 // I know this is inefficient and am thinking about a better way.
 {
 if (row == NULL)
     return NULL;
 struct gpFx *effect;
 lmAllocVar(lm, effect);
 struct annoGrator *gSelf = (struct annoGrator *)sSelf;
 // get gpFx words which follow internal source's words:
 char **words = (char **)(row->data);
 int count = gSelf->mySource->numCols;
 
 effect->gAllele = lmCloneString(lm, words[count++]);
 effect->transcript = lmCloneString(lm, words[count++]);
 effect->soNumber = atol(words[count++]);
 effect->detailType = atol(words[count++]);
 
 if (effect->detailType == intron)
     {
     effect->details.intron.intronNumber = atol(words[count++]);
     effect->details.intron.intronCount = atol(words[count++]);
     }
 else if (effect->detailType == nonCodingExon)
     {
     effect->details.nonCodingExon.exonNumber = atol(words[count++]);
     effect->details.nonCodingExon.exonCount = atol(words[count++]);
     effect->details.nonCodingExon.cDnaPosition = atol(words[count++]);
     effect->details.nonCodingExon.txRef = lmCloneString(lm, words[count++]);
     effect->details.nonCodingExon.txAlt = lmCloneString(lm, words[count++]);
     }
 else if (effect->detailType == codingChange)
     {
     effect->details.codingChange.exonNumber = atol(words[count++]);
     effect->details.codingChange.exonCount = atol(words[count++]);
     effect->details.codingChange.cDnaPosition = atol(words[count++]);
     effect->details.codingChange.txRef = lmCloneString(lm, words[count++]);
     effect->details.codingChange.txAlt = lmCloneString(lm, words[count++]);
     effect->details.codingChange.cdsPosition = atol(words[count++]);
     effect->details.codingChange.pepPosition = atol(words[count++]);
     effect->details.codingChange.aaOld = lmCloneString(lm, words[count++]);
     effect->details.codingChange.aaNew = lmCloneString(lm, words[count++]);
     effect->details.codingChange.codonOld = lmCloneString(lm, words[count++]);
     effect->details.codingChange.codonNew = lmCloneString(lm, words[count++]);
     }
 else if (effect->detailType != none)
     errAbort("annoGratorGpVar: unknown effect type %d", effect->detailType);
 return effect;
 }
 
 // Container for optional HGVS terms
 struct hgvsTerms
     {
     char *hgvsG;     // HGVS g. term or NULL
     char *hgvsCN;    // HGVS c. or n. term or NULL
     char *hgvsP;     // HGVS p. term or NULL
     };
 
 static  void hgvsTermsFree(struct hgvsTerms *hgvs)
 /* Free struct hgvsTerms and its members. */
 {
 if (hgvs)
     {
     freez(&hgvs->hgvsG);
     freez(&hgvs->hgvsCN);
     freez(&hgvs->hgvsP);
     freeMem(hgvs);
     }
 }
 
 static struct annoRow *aggvEffectToRow(struct annoGratorGpVar *self, struct gpFx *effect,
 				       struct annoRow *rowIn, struct hgvsTerms *hgvs,
                                        struct lm *callerLm)
 // convert a single genePred annoRow and gpFx record to an augmented genePred annoRow;
 {
 struct annoGrator *gSelf = &(self->grator);
 struct annoStreamer *sSelf = &(gSelf->streamer);
 assert(sSelf->numCols > gSelf->mySource->numCols);
 
 char **wordsOut;
 lmAllocArray(self->lm, wordsOut, sSelf->numCols);
 
 // copy the genePred fields over
 int gpColCount = gSelf->mySource->numCols;
 char **wordsIn = (char **)rowIn->data;
 memcpy(wordsOut, wordsIn, sizeof(char *) * gpColCount);
 
 // stringify the gpFx structure 
 aggvStringifyGpFx(&wordsOut[gpColCount], effect, callerLm);
 
 // Final columns: optional HGVS terms
 wordsOut[sSelf->numCols-3] = lmCloneString(callerLm, hgvs && hgvs->hgvsG ? hgvs->hgvsG : "");
 wordsOut[sSelf->numCols-2] = lmCloneString(callerLm, hgvs && hgvs->hgvsCN ? hgvs->hgvsCN : "");
 wordsOut[sSelf->numCols-1] = lmCloneString(callerLm, hgvs && hgvs->hgvsP ? hgvs->hgvsP : "");
 
 return annoRowFromStringArray(rowIn->chrom, rowIn->start, rowIn->end, rowIn->rightJoinFail,
 			      wordsOut, sSelf->numCols, callerLm);
 }
 
 struct dnaSeq *genePredToGenomicSequence(struct genePred *pred, struct annoAssembly *aa,
 					 struct lm *lm)
 /* Return concatenated genomic sequence of exons of pred. */
 {
 int txLen = 0;
 int i;
 for (i=0; i < pred->exonCount; i++)
     txLen += (pred->exonEnds[i] - pred->exonStarts[i]);
 char *seq = lmAlloc(lm, txLen + 1);
 int offset = 0;
 for (i=0; i < pred->exonCount; i++)
     {
     int exonStart = pred->exonStarts[i];
     int exonEnd = pred->exonEnds[i];
     annoAssemblyGetSeq(aa, pred->chrom, exonStart, exonEnd, seq+offset, txLen+1-offset);
     offset += (exonEnd - exonStart);
     }
 if(pred->strand[0] == '-')
     reverseComplement(seq, txLen);
 struct dnaSeq *txSeq = NULL;
 lmAllocVar(lm, txSeq);
 txSeq->name = lmCloneString(lm, pred->name);
 txSeq->dna = seq;
 txSeq->size = txLen;
 return txSeq;
 }
 
 struct dnaSeq *translateTx(struct dnaSeq *txSeq, struct genbankCds *cds)
 /* Translate txSeq into protein sequence, including 'X' for stop codon if present. */
 {
 struct dnaSeq *protSeq = translateSeq(txSeq, cds->start, FALSE);
 aaSeqZToX(protSeq);
 return protSeq;
 }
 
 static struct udcFile *getCachedUdcFile(char *fileOrUrl)
 /* Return an open UDC file handle for fileOrUrl; cache open connections.  errAbort if can't open. */
 {
 static struct hash *hash = NULL;
 if (hash == NULL)
     hash = hashNew(0);
 struct udcFile *udcf = hashFindVal(hash, fileOrUrl);
 if (udcf == NULL)
     {
     char *realFileOrUrl = hReplaceGbdb(fileOrUrl);
     udcf = udcFileOpen(realFileOrUrl, NULL);
     hashAdd(hash, fileOrUrl, udcf);
     freeMem(realFileOrUrl);
     }
 return udcf;
 }
 
 static struct dnaSeq *getCachedSeq(char *fileOrUrl, off_t offset, size_t size, boolean isDna)
 /* Parse FASTA in file fileOrUrl at offset and return a cached dnaSeq. */
 {
 static struct hash *hash = NULL;
 if (hash == NULL)
     hash = hashNew(0);
 char key[4096];
 safef(key, sizeof(key), "%s_%lld_%lld", fileOrUrl, (long long)offset, (long long)size);
 struct dnaSeq *seq = hashFindVal(hash, key);
 if (seq == NULL)
     {
     char *buf = needMem(size+1);
     struct udcFile *udcf = getCachedUdcFile(fileOrUrl);
     udcSeek(udcf, offset);
     udcRead(udcf, buf, size);
     seq = faSeqFromMemText(buf, isDna);
     toUpperN(seq->dna, seq->size);
     hashAdd(hash, key, seq);
     }
 return seq;
 }
 
 struct dnaSeq *getProtSeq(struct annoGratorGpVar *self, char *protAcc,
                           struct dnaSeq *txSeq, struct genbankCds *cds)
 /* If protAcc is NULL, translate txSeq+cds; else look up protAcc. */
 {
 static struct hash *hash = NULL;
 if (hash == NULL)
     hash = hashNew(0);
 struct dnaSeq *accSeq = NULL;
 if (isEmpty(protAcc))
     {
     accSeq = hashFindVal(hash, txSeq->name);
     if (accSeq == NULL)
         {
         accSeq = translateTx(txSeq, cds);
         hashAdd(hash, txSeq->name, accSeq);
         }
     }
 else
     {
     accSeq = hashFindVal(hash, protAcc);
     char *db = self->grator.streamer.assembly->name;
     char query[1024];
     struct sqlConnection *conn = hAllocConn(db);
     //#*** Using presence or absence of dot-version is an ugly hack, but it will do for now;
     //#*** otherwise there's new config to pass in & store...
     if (strchr(protAcc, '.'))
         {
         // Use ncbiRefSeqPepTable
         sqlSafef(query, sizeof(query), "select seq from ncbiRefSeqPepTable where name = '%s'",
                  protAcc);
         char *seq = sqlQuickString(conn, query);
         if (seq)
             accSeq = newDnaSeq(seq, strlen(seq), protAcc);
         }
     else
         {
         // Get GenBank versioned acc and seq
         sqlSafef(query, sizeof(query),
                  "select path,file_offset,file_size from %s,%s "
                  "where acc = '%s' and gbExtFile.id = gbExtFile",
                  gbSeqTable, gbExtFileTable, protAcc);
         char **row;
         struct sqlResult *sr = sqlGetResult(conn, query);
         if ((row = sqlNextRow(sr)) != NULL)
             accSeq = getCachedSeq(row[0], atoll(row[1]), atoll(row[2]), FALSE);
         sqlFreeResult(&sr);
         }
     if (accSeq == NULL)
         // Store a dnaSeq with NULL name and seq so we don't waste time sql querying this again.
         accSeq = newDnaSeq(NULL, 0, NULL);
     hashAdd(hash, protAcc, accSeq);
     hFreeConn(&conn);
     }
 return (accSeq->name == NULL) ? NULL : accSeq;
 }
 
 static struct hgvsTerms *getHgvsTerms(struct annoGratorGpVar *self, char *chromAcc,
                                       struct psl *psl, struct genbankCds *cds,
                                       struct dnaSeq *txSeq, struct dnaSeq *protSeq,
                                       struct vpTx *vpTx, struct vpPep *vpPep)
 /* Return HGVS terms for a variant allele projected onto the genome. */
 {
 struct hgvsTerms *hgvs;
 AllocVar(hgvs);
 struct bed3 variantBed;
 variantBed.chrom = psl->tName;
 variantBed.chromStart = min(vpTx->start.gOffset, vpTx->end.gOffset);
 variantBed.chromEnd = max(vpTx->start.gOffset, vpTx->end.gOffset);
 if (self->hgvsMakeG)
     {
     int gAltLen = strlen(vpTx->gAlt);
     char gAlt[gAltLen+1];
     safecpy(gAlt, sizeof(gAlt), vpTx->gAlt);
     if (pslQStrand(psl) == '-')
         reverseComplement(gAlt, gAltLen);
     hgvs->hgvsG = hgvsGFromVariant(self->gSeqWin, &variantBed, gAlt, chromAcc,
                                    self->hgvsBreakDelIns);
     }
 if ((self->hgvsMakeCN || self->hgvsMakeP) && txSeq)
     {
     if (cds->start != cds->end && cds->start >= 0)
         {
         if (self->hgvsMakeCN)
             hgvs->hgvsCN = hgvsCFromVpTx(vpTx, self->gSeqWin, psl, cds, txSeq,
                                          self->hgvsBreakDelIns);
         if (self->hgvsMakeP)
             {
             hgvs->hgvsP = hgvsPFromVpPep(vpPep, protSeq, self->hgvsAddParensToP);
             }
         }
     else if (self->hgvsMakeCN)
         hgvs->hgvsCN = hgvsNFromVpTx(vpTx, self->gSeqWin, psl, txSeq,
                                      self->hgvsBreakDelIns);
     }
 return hgvs;
 }
 
 
 static struct annoRow *aggvPredict(struct annoGratorGpVar *self, struct variant *variant,
                                    struct psl *psl, struct genbankCds *cds,
                                    struct dnaSeq *txSeq, struct dnaSeq *protSeq,
                                    struct annoRow *inRow, struct lm *callerLm)
 // Project variant through psl onto transcript and predict functional effects.
 {
 struct annoRow *rowList = NULL;
 char *db = self->grator.streamer.assembly->name;
 char *chromAcc = self->hgvsMakeG ? hRefSeqAccForChrom(db, variant->chrom) : NULL;
 struct bed3 *variantBed = (struct bed3 *)variant;
 vpExpandIndelGaps(psl, self->gSeqWin, txSeq);
 struct allele *allele;
 for (allele = variant->alleles;  allele != NULL;  allele = allele->next)
     {
     char *alt = allele->sequence;
     struct vpTx *vpTx = vpGenomicToTranscript(self->gSeqWin, variantBed, alt, psl, txSeq);
     if (!allele->isReference || vpTx->genomeMismatch)
         {
         struct vpPep *vpPep = vpTranscriptToProtein(vpTx, cds, txSeq, protSeq);
         struct hgvsTerms *hgvs = getHgvsTerms(self, chromAcc, psl, cds, txSeq, protSeq,
                                               vpTx, vpPep);
         struct gpFx *fxList = vpTranscriptToGpFx(vpTx, psl, cds, txSeq, vpPep, protSeq, self->lm);
         struct annoRow *rows = NULL;
         struct gpFx *fx;
         for(fx = fxList;  fx != NULL; fx = fx->next)
             {
             // Intergenic variants never pass through here so we don't have to filter them out
             // here if self->funcFilter is null.
             if (self->funcFilter == NULL || passesFilter(self, fx))
                 {
                 // Restore the original variant's alt allele
                 fx->gAllele = lmCloneString(self->lm, allele->sequence);
                 slAddHead(&rows, aggvEffectToRow(self, fx, inRow, hgvs, callerLm));
                 }
             }
         slReverse(&rows);
         rowList = slCat(rows, rowList);
         hgvsTermsFree(hgvs);
         vpPepFree(&vpPep);
         }
     vpTxFree(&vpTx);
     }
 freeMem(chromAcc);
 return rowList;
 }
 
 static void lookupProtAcc(struct annoGratorGpVar *self, struct dnaSeq *protSeq)
 /* For Gencode, try to find the ENSP* ID associated with the ENST* ID. */
 {
 char *db = self->grator.streamer.assembly->name;
 if (! self->protLookupInited)
     {
     char *sourceName = self->grator.streamer.name;
     if (strstr(sourceName, "wgEncodeGencode"))
         {
         char *version = strrchr(sourceName, 'V');
         if (version)
             {
             if (!trackHubDatabase(db))
                 {
                 char attrsTable[512];
                 safef(attrsTable, sizeof(attrsTable), "wgEncodeGencodeAttrs%s", version);
                 if (hTableExists(db, attrsTable) && hHasField(db, attrsTable, "proteinId"))
                     {
                     self->protLookupHash = hashNew(0);
                     self->protLookupTable = cloneString(attrsTable);
                     }
                 }
             }
         }
     self->protLookupInited = TRUE;
     }
 if (self->protLookupHash != NULL)
     {
     char *txAcc = protSeq->name;
     struct hashEl *hel = hashLookup(self->protLookupHash, txAcc);
     if (hel == NULL)
         {
         struct sqlConnection *conn = hAllocConn(db);
         char query[2048];
         sqlSafef(query, sizeof(query), "select proteinId from %s where transcriptId = '%s'",
                  self->protLookupTable, txAcc);
         char *protAcc = sqlQuickString(conn, query);
         hel = hashAdd(self->protLookupHash, txAcc, protAcc);
         hFreeConn(&conn);
         }
     if (hel->val != NULL)
         {
         freeMem(protSeq->name);
         protSeq->name = cloneString(hel->val);
         }
     }
 }
 
 static struct annoRow *aggvGenRowsGp(struct annoGratorGpVar *self, struct variant *variant,
                                      struct genePred *pred, struct annoRow *inRow,
                                      struct lm *callerLm)
 // put out annoRows for all the gpFx that arise from variant and pred
 {
 struct annoStreamer *sSelf = &(self->grator.streamer);
 struct genbankCds cds;
 genePredToCds(pred, &cds);
 struct dnaSeq *txSeq = genePredToGenomicSequence(pred, sSelf->assembly, self->lm);
 int chromSize = 0;  // unused
 struct psl *psl = genePredToPsl(pred, chromSize, txSeq->size);
+pslRemoveFrameShifts(psl);
 vpExpandIndelGaps(psl, self->gSeqWin, txSeq);
 struct dnaSeq *protSeq = NULL;
 if (cds.end > cds.start)
     {
     //#*** what if cds.startComplete is not true??
     protSeq = translateTx(txSeq, &cds);
     lookupProtAcc(self, protSeq);
     }
 struct annoRow *rowList = aggvPredict(self, variant, psl, &cds, txSeq, protSeq, inRow, callerLm);
 pslFree(&psl);
 dnaSeqFree(&protSeq);
 return rowList;
 }
 
 static struct annoRow *aggvGenRowsPsl(struct annoGratorGpVar *self, struct variant *variant,
                                      struct annoRow *inRow, struct lm *callerLm)
 // put out annoRows for all the gpFx that arise from variant and transcript psl+
 {
 char **ppWords = inRow->data;
 struct psl *psl = pslLoad(ppWords);
 struct genbankCds cds;
 genbankCdsParse(ppWords[PSLPLUS_CDS_IX], &cds);
 struct dnaSeq *txSeq = getCachedSeq(ppWords[PSLPLUS_PATH_IX], atoll(ppWords[PSLPLUS_FILEOFFSET_IX]),
                                     atoll(ppWords[PSLPLUS_FILESIZE_IX]), TRUE);
 struct dnaSeq *protSeq = getProtSeq(self, ppWords[PSLPLUS_PROTACC_IX], txSeq, &cds);
 struct annoRow *rowList = aggvPredict(self, variant, psl, &cds, txSeq, protSeq, inRow, callerLm);
 pslFree(&psl);
 return rowList;
 }
 
 struct annoRow *aggvGenelessRow(struct annoGratorGpVar *self, struct variant *variant,
                                 boolean rjFail, struct lm *callerLm)
 /* If intergenic variants (no overlapping or nearby genes) are to be included in output,
  * make an output row with empty genePred and a gpFx that is empty except for soNumber. */
 {
 struct annoGrator *gSelf = &(self->grator);
 struct annoStreamer *sSelf = &(gSelf->streamer);
 char **wordsOut;
 lmAllocArray(self->lm, wordsOut, sSelf->numCols);
 // Add empty strings for genePred string columns:
 int gpColCount = gSelf->mySource->numCols;
 int i;
 for (i = 0;  i < gpColCount;  i++)
     wordsOut[i] = "";
 struct gpFx *gpFx;
 lmAllocVar(self->lm, gpFx);
 enum soTerm term = hasAltAllele(variant->alleles) ? intergenic_variant : no_sequence_alteration;
 if (term == no_sequence_alteration)
     gpFx->gAllele = variant->alleles->sequence;
 else
     gpFx->gAllele = firstAltAllele(variant->alleles);
 if (isAllNt(gpFx->gAllele, strlen(gpFx->gAllele)))
     touppers(gpFx->gAllele);
 gpFx->soNumber = term;
 gpFx->detailType = none;
 aggvStringifyGpFx(&wordsOut[gpColCount], gpFx, self->lm);
 if (self->hgvsMakeG)
     {
     // Add HGVS genomic term
     struct bed3 *variantBed = (struct bed3 *)variant;
     char *chromAcc = hRefSeqAccForChrom(sSelf->assembly->name, variant->chrom);
     char *hgvsG = hgvsGFromVariant(self->gSeqWin, variantBed, gpFx->gAllele, chromAcc,
                                    self->hgvsBreakDelIns);
     wordsOut[sSelf->numCols-3] = lmCloneString(callerLm, hgvsG);
     freeMem(chromAcc);
     freeMem(hgvsG);
     }
 return annoRowFromStringArray(variant->chrom, variant->chromStart, variant->chromEnd, rjFail,
 			      wordsOut, sSelf->numCols, callerLm);
 }
 
 static struct variant *variantFromPgSnpTableRow(struct annoGratorGpVar *self, struct annoRow *row,
                                                 char *refAllele)
 /* Translate pgSnp array of words into variant. */
 {
 return variantFromPgSnpAnnoRow(row, refAllele, TRUE, self->lm);
 }
 
 static struct variant *variantFromPgSnpFileRow(struct annoGratorGpVar *self, struct annoRow *row,
                                                char *refAllele)
 /* Translate pgSnp array of words into variant. */
 {
 return variantFromPgSnpAnnoRow(row, refAllele, FALSE, self->lm);
 }
 
 static struct variant *variantFromVcfRow(struct annoGratorGpVar *self, struct annoRow *row,
 					 char *refAllele)
 /* Translate vcf array of words into variant. */
 {
 return variantFromVcfAnnoRow(row, refAllele, self->lm, self->dyScratch);
 }
 
 static void setVariantFromRow(struct annoGratorGpVar *self, struct annoStreamRows *primaryData)
 /* Depending on autoSql definition of primary source, choose a function to translate
  * incoming rows into generic variants. */
 {
 if (asObjectsMatch(primaryData->streamer->asObj, pgSnpAsObj()))
     self->variantFromRow = variantFromPgSnpTableRow;
 else if (asObjectsMatch(primaryData->streamer->asObj, pgSnpFileAsObj()))
     self->variantFromRow = variantFromPgSnpFileRow;
 else if (asObjectsMatch(primaryData->streamer->asObj, vcfAsObj()))
     self->variantFromRow = variantFromVcfRow;
 }
 
 struct annoRow *annoGratorGpVarIntegrate(struct annoGrator *gSelf,
 					 struct annoStreamRows *primaryData,
 					 boolean *retRJFilterFailed, struct lm *callerLm)
 // integrate a variant and a genePred, generate as many rows as
 // needed to capture all the changes
 {
 struct annoGratorGpVar *self = (struct annoGratorGpVar *)gSelf;
 struct annoStreamer *sSelf = &(gSelf->streamer);
 lmCleanup(&(self->lm));
 self->lm = lmInit(0);
 if (self->variantFromRow == NULL)
     setVariantFromRow(self, primaryData);
 // TODO Performance improvement: instead of creating the transcript sequence for each
 // variant that intersects the transcript, cache transcript sequence; possibly
 // an slPair with a concatenation of {chrom, txStart, txEnd, cdsStart, cdsEnd,
 // exonStarts, exonEnds} as the name, and sequence as the val.  When something in
 // the list is no longer in the list of rows from the internal annoGratorIntegrate call,
 // drop it.
 // BETTER YET: make a callback for gpFx to get CDS sequence only when it needs it.
 struct annoRow *primaryRow = primaryData->rowList;
 int refAlBufSize = primaryRow->end - primaryRow->start + 1;
 char refAllele[refAlBufSize];
 annoAssemblyGetSeq(sSelf->assembly, primaryRow->chrom, primaryRow->start, primaryRow->end,
 		   refAllele, sizeof(refAllele));
 struct variant *variant = self->variantFromRow(self, primaryRow, refAllele);
 
 // Temporarily tweak primaryRow's start and end to find upstream/downstream overlap:
 int pStart = primaryRow->start, pEnd = primaryRow->end;
 if (primaryRow->start <= GPRANGE)
     primaryRow->start = 0;
 else
     primaryRow->start -= GPRANGE;
 primaryRow->end += GPRANGE;
 struct annoRow *rows = annoGratorIntegrate(gSelf, primaryData, retRJFilterFailed, self->lm);
 primaryRow->start = pStart;
 primaryRow->end = pEnd;
 
 if (rows == NULL)
     {
     // No genePreds means that the primary variant is intergenic.
     if ((self->funcFilter == NULL || self->funcFilter->intergenic))
         return aggvGenelessRow(self, variant, *retRJFilterFailed, callerLm);
     else if (retRJFilterFailed && self->gpVarOverlapRule == agoMustOverlap)
 	*retRJFilterFailed = TRUE;
     return NULL;
     }
 if (retRJFilterFailed && *retRJFilterFailed)
     return NULL;
 
 struct annoRow *outRows = NULL;
 
 for(; rows; rows = rows->next)
     {
     struct annoRow *outRow = NULL;
     if (self->sourceIsPslPlus)
         {
         outRow = aggvGenRowsPsl(self, variant, rows, callerLm);
         }
     else
         {
         struct genePred *gp;
         if (self->sourceIsBigGenePred)
             gp = (struct genePred *)genePredFromBigGenePredRow(rows->data);
         else
             {
             // work around genePredLoad's trashing its input
             char **inWords = rows->data;
             char *saveExonStarts = lmCloneString(self->lm, inWords[8]);
             char *saveExonEnds = lmCloneString(self->lm, inWords[9]);
             gp = self->sourceHasFrames ? genePredExtLoad(inWords, GENEPREDX_NUM_COLS) :
                                          genePredLoad(inWords);
             inWords[8] = saveExonStarts;
             inWords[9] = saveExonEnds;
             }
         outRow = aggvGenRowsGp(self, variant, gp, rows, callerLm);
         genePredFree(&gp);
         }
     if (outRow != NULL)
         {
         slReverse(&outRow);
         outRows = slCat(outRow, outRows);
         }
     }
 slReverse(&outRows);
 // If all rows failed the filter, and we must overlap, set *retRJFilterFailed.
 if (outRows == NULL && retRJFilterFailed && self->gpVarOverlapRule == agoMustOverlap)
     *retRJFilterFailed = TRUE;
 return outRows;
 }
 
 static void aggvSetOverlapRule(struct annoGrator *gSelf, enum annoGratorOverlap rule)
 /* We need an overlap rule that is independent of the genePred integration because
  * if we're including intergenic variants, then we return a row even though no genePred
  * rows overlap. */
 {
 struct annoGratorGpVar *self = (struct annoGratorGpVar *)gSelf;
 self->gpVarOverlapRule = rule;
 // For mustOverlap, if we're including intergenic variants in output, don't let simple
 // integration set retRjFilterFailed:
 if (rule == agoMustOverlap && self->funcFilter != NULL && self->funcFilter->intergenic)
     gSelf->overlapRule = agoNoConstraint;
 else
     gSelf->overlapRule = rule;
 }
 
 void aggvClose(struct annoStreamer **pSSelf)
 /* Close out localmem and all the usual annoGrator stuff. */
 {
 if (*pSSelf != NULL)
     {
     struct annoGratorGpVar *self = (struct annoGratorGpVar *)(*pSSelf);
     lmCleanup(&(self->lm));
     dyStringFree(&(self->dyScratch));
     freez(&self->protLookupTable);
     hashFree(&self->protLookupHash);
     annoGratorClose(pSSelf);
     }
 }
 
 struct annoGrator *annoGratorGpVarNew(struct annoStreamer *mySource)
 /* Make a subclass of annoGrator that combines genePreds from mySource with
  * pgSnp rows from primary source to predict functional effects of variants
  * on genes.
  * mySource becomes property of the new annoGrator (don't close it, close annoGrator). */
 {
 struct annoGratorGpVar *self;
 AllocVar(self);
 struct annoGrator *gSelf = &(self->grator);
 annoGratorInit(gSelf, mySource);
 struct annoStreamer *sSelf = &(gSelf->streamer);
 // We add columns beyond what comes from mySource, so update our public-facing asObject:
 annoGratorSetAutoSqlObject(sSelf, annoGpVarAsObj(mySource->asObj));
 gSelf->setOverlapRule = aggvSetOverlapRule;
 sSelf->close = aggvClose;
 // integrate by adding gpFx fields
 gSelf->integrate = annoGratorGpVarIntegrate;
 self->dyScratch = dyStringNew(0);
 self->sourceHasFrames = (asColumnFindIx(mySource->asObj->columnList, "exonFrames") >= 0);
 self->sourceIsBigGenePred = (asColumnFindIx(mySource->asObj->columnList, "chromStart") >= 0);
 self->sourceIsPslPlus = (asColumnFindIx(mySource->asObj->columnList, "tStart") >= 0);
 char *db = sSelf->assembly->name;
 self->gSeqWin = chromSeqWindowNew(db, NULL, 0, 0);
 
 return gSelf;
 }
 
 void annoGratorGpVarSetFuncFilter(struct annoGrator *gSelf,
 				  struct annoGratorGpVarFuncFilter *funcFilter)
 /* If funcFilter is non-NULL, it specifies which functional categories
  * to include in output; if NULL, by default intergenic variants are excluded and
  * all other categories are included.
  * NOTE: This calls gSelf->setOverlapRule() with the currently set overlap rule because
  * overlapRule is affected by filter settings.  */
 {
 struct annoGratorGpVar *self = (struct annoGratorGpVar *)gSelf;
 freez(&self->funcFilter);
 if (funcFilter != NULL)
     self->funcFilter = CloneVar(funcFilter);
 // Since our overlapRule behavior depends on filter settings, reevaluate:
 gSelf->setOverlapRule(gSelf, self->gpVarOverlapRule);
 }
 
 void annoGratorGpVarSetHgvsOutOptions(struct annoGrator *gSelf, uint hgvsOutOptions)
 /* Import the HGVS output options described in hgHgvs.h */
 {
 struct annoGratorGpVar *self = (struct annoGratorGpVar *)gSelf;
 if (hgvsOutOptions & HGVS_OUT_G)
     self->hgvsMakeG = TRUE;
 if (hgvsOutOptions & HGVS_OUT_CN)
     self->hgvsMakeCN = TRUE;
 if (hgvsOutOptions & HGVS_OUT_P)
     self->hgvsMakeP = TRUE;
 if (hgvsOutOptions & HGVS_OUT_P_ADD_PARENS)
     self->hgvsAddParensToP = TRUE;
 if (hgvsOutOptions & HGVS_OUT_BREAK_DELINS)
     self->hgvsBreakDelIns = TRUE;
 }