cdf97b3df98fc12b2b58df8c44a1b0e532fc27de jnavarr5 Tue May 12 15:52:55 2020 -0700 Updating http to https for panTro2, uiLinks cronjob. diff --git src/hg/makeDb/trackDb/nscanGene.html src/hg/makeDb/trackDb/nscanGene.html index 46fba02..7cceccd 100644 --- src/hg/makeDb/trackDb/nscanGene.html +++ src/hg/makeDb/trackDb/nscanGene.html @@ -7,31 +7,31 @@ <H2>Methods</H2> <P> N-SCAN combines biological-signal modeling in the target genome sequence along with information from a multiple-genome alignment to generate de novo gene predictions. It extends the TWINSCAN target-informant genome pair to allow for an arbitrary number of informant sequences as well as richer models of sequence evolution. N-SCAN models the phylogenetic relationships between the aligned genome sequences, context-dependent substitution rates, insertions, and deletions. </P> <P>${informant}</P> <H2>Credits</H2> <P> -Thanks to <A HREF="http://mblab.wustl.edu/" +Thanks to <A HREF="https://mblab.wustl.edu/" TARGET=_blank>Michael Brent's Computational Genomics Group</A> at Washington University St. Louis for providing this data. </P> <p> Special thanks for this implementation of N-SCAN to Aaron Tenney in the Brent lab, and Robert Zimmermann, currently at Max F. Perutz Laboratories in Vienna, Austria. </p> <H2>References</H2> <p> Gross SS, Brent MR. <a href="https://www.liebertpub.com/doi/pdf/10.1089/cmb.2006.13.379" target="_blank"> Using multiple alignments to improve gene prediction</a>. <em>J Comput Biol</em>. 2006 Mar;13(2):379-93.