482d460b09a00806e44c9df3005fad97ce173ec1
kent
  Tue Jan 12 11:13:48 2021 -0800
Fixing an off by one bug Jonathan spotted during code review.

diff --git src/utils/clusterMatrixToBarChartBed/clusterMatrixToBarChartBed.c src/utils/clusterMatrixToBarChartBed/clusterMatrixToBarChartBed.c
index 20cfd80..c82d45a 100644
--- src/utils/clusterMatrixToBarChartBed/clusterMatrixToBarChartBed.c
+++ src/utils/clusterMatrixToBarChartBed/clusterMatrixToBarChartBed.c
@@ -1,325 +1,325 @@
 /* clusterMatrixToBarChartBed - Compute a barchart bed file from  a gene matrix 
  * and a gene bed file and a way to cluster samples. */
 
 #include "common.h"
 #include "linefile.h"
 #include "hash.h"
 #include "options.h"
 #include "localmem.h"
 #include "obscure.h"
 #include "sqlNum.h"
 
 boolean clSimple = FALSE;
 boolean clMedian = FALSE;
 char *clName2 = NULL;
 
 void usage()
 /* Explain usage and exit. */
 {
 errAbort(
   "clusterMatrixToBarChartBed - Compute a barchart bed file from  a gene matrix\n"
   "and a gene bed file and a way to cluster samples.\n"
   "NOTE: consider using matrixClusterColumns and matrixToBarChartBed instead\n"
   "usage:\n"
   "   clusterMatrixToBarChartBed sampleClusters.tsv geneMatrix.tsv geneset.bed output.bed\n"
   "where:\n"
   "   sampleClusters.tsv is a two column tab separated file with sampleId and clusterId\n"
   "   geneMatrix.tsv has a row for each gene. The first row uses the same sampleId as above\n"
   "   geneset.bed has the maps the genes in the matrix (from it's first column) to the genome\n"
   "        geneset.bed needs 6 standard bed fields.  Unless name2 is set it also needs a name2\n"
   "        field as the last field\n"
   "   output.bed is the resulting bar chart, with one column per cluster\n"
   "options:\n"
   "   -simple - don't store the position of gene in geneMatrix.tsv file in output\n"
   "   -median - use median (instead of mean)\n"
   "   -name2=twoColFile.tsv - get name2 from file where first col is same ase geneset.bed's name\n"
   );
 }
 
 /* Command line validation table. */
 static struct optionSpec options[] = {
    {"simple", OPTION_BOOLEAN},
    {"median", OPTION_BOOLEAN},
    {"name2", OPTION_STRING},
    {NULL, 0},
 };
 
 void hashSamplesAndClusters(char *tsvFile, 
     struct hash **retSampleHash, struct hash **retClusterHash)
 /* Read two column tsv file into a hash keyed by first column */
 {
 struct hash *sampleHash = hashNew(0);
 struct hash *clusterHash = hashNew(0);
 char *row[2];
 struct lineFile *lf = lineFileOpen(tsvFile, TRUE);
 while (lineFileNextRowTab(lf, row, ArraySize(row)) )
     {
     /* Find cluster in cluster hash, if it doesn't exist make it. */
     char *clusterName = row[1];
     struct hashEl *hel = hashLookup(clusterHash, clusterName);
     if (hel == NULL)
 	hel = hashAddInt(clusterHash, clusterName, 1);
     else
 	hel->val = ((char *)hel->val)+1;    // Increment hash pointer as per hashIncInt
     char *clusterStableName = hel->name;	// This is allocated in clusterHash
     hashAdd(sampleHash, row[0], clusterStableName);
     }
 lineFileClose(&lf);
 *retSampleHash = sampleHash;
 *retClusterHash = clusterHash;
 }
 
 void clusterMatrixToBarChartBed(char *sampleClusters, char *matrixTsv, char *geneBed, char *output)
 /* clusterMatrixToBarChartBed - Compute a barchart bed file from  a gene matrix 
  * and a gene bed file and a way to cluster samples. */
 {
 /* Figure out if we need to do medians etc */
 boolean doMedian = clMedian;
 
 /* Load up the gene set */
 verbose(2, "clusterMatrixToBarChartBed(%s,%s,%s,%s)\n", sampleClusters, matrixTsv, geneBed, output);
 int bedRowSize = 0;
 struct hash *geneHash = hashTsvBy(geneBed, 3, &bedRowSize);
 verbose(2, "%d columns about %d genes in %s\n", bedRowSize, geneHash->elCount, geneBed);
 
 /* Deal with external gene hash */
 struct hash *nameToName2 = NULL;
 if (clName2 != NULL)
     {
     int colCount = 0;
     nameToName2 = hashTsvBy(clName2, 0, &colCount);
     if (colCount != 2)
         errAbort("Expecting %s to be a two column tab separated file", clName2);
     }
 
 /* Keep track of how many fields gene bed has to have and locate name2 */
-int geneBedMinSize = 6;
+int geneBedMinSize = 7;
 int name2Ix = bedRowSize - 1;	    // Last field if it is in bed
 if (clName2 != NULL)
     geneBedMinSize -= 1;
 if (bedRowSize < geneBedMinSize)
     {
     if (clName2 == NULL)
 	errAbort("%s needs to have at least 6 standard BED fields and a name2 field\n", geneBed);
     else
 	errAbort("%s needs to have at least 6 standard BED fields\n", geneBed);
     }
 
 
 /* Load up the sample clustering */
 struct hash *sampleHash = NULL, *clusterHash = NULL;
 hashSamplesAndClusters(sampleClusters, &sampleHash, &clusterHash);
 int clusterCount = clusterHash->elCount;
 verbose(1, "%d samples and %d clusters in %s\n", sampleHash->elCount, clusterCount,
     sampleClusters);
 if (clusterCount <= 1 || clusterCount >= 10000)
     errAbort("%d is not a good number of clusters", clusterCount);
 double clusterTotal[clusterCount];
 int clusterElements[clusterCount];
 
 /* Alphabetize cluster names  */
 char *clusterNames[clusterCount];
 struct hashEl *hel;
 struct hashCookie cookie = hashFirst(clusterHash);
 int clusterIx = 0;
 while ((hel = hashNext(&cookie)) != NULL)
     {
     clusterNames[clusterIx] = hel->name;
     ++clusterIx;
     }
 sortStrings(clusterNames, clusterCount);
 verbose(2, "%s to %s\n", clusterNames[0], clusterNames[clusterCount-1]);
 
 /* Figure out size of each alphabetized cluster in terms of number of samples in cluster 
  * if we are doing median */
 int clusterSize[clusterCount];
 double *clusterSamples[clusterCount];
 if (doMedian)
     {
     for (clusterIx = 0; clusterIx < clusterCount; ++clusterIx)
 	{
 	clusterSize[clusterIx] = hashIntVal(clusterHash, clusterNames[clusterIx]);
 	verbose(2, "clusterSize[%d] = %d\n", clusterIx, clusterSize[clusterIx]);
 	}
 
     /* Make up array of doubles for each cluster to hold all samples in that clusters */
     for (clusterIx = 0; clusterIx < clusterCount; ++clusterIx)
 	{
 	double *samples;
 	AllocArray(samples, clusterSize[clusterIx]);
 	clusterSamples[clusterIx] = samples;
 	}
     }
 
 /* Make hash that goes from cluster name to cluster index */
 struct hash *clusterToClusterIdHash = hashNew(0);
 for (clusterIx = 0; clusterIx<clusterCount; ++clusterIx)
     {
     hashAddInt(clusterToClusterIdHash, clusterNames[clusterIx], clusterIx);
     }
 
 
 /* Open output */
 FILE *f = mustOpen(output, "w");
 
 /* Open up matrix file and read first line into sample labeling */
 struct lineFile *lf = lineFileOpen(matrixTsv, TRUE);
 char *line;
 lineFileNeedNext(lf, &line, NULL);
 if (line[0] == '#')	// Opening sharp on labels is optional, skip it if there
     line = skipLeadingSpaces(line+1);
 int colCount = chopByChar(line, '\t', NULL, 0);
 int colAlloc = colCount + 1;
 char **sampleNames;
 AllocArray(sampleNames, colAlloc);
 chopByChar(line, '\t', sampleNames, colCount);
 
 /* Make array that maps row index to clusterID */
 int colToCluster[colCount];
 int colIx;
 for (colIx=1; colIx <colCount; colIx = colIx+1)
     {
     char *colName = sampleNames[colIx];
     char *clusterName = hashFindVal(sampleHash, colName);
     colToCluster[colIx] = -1;
     if (clusterName != NULL)
         {
 	int clusterId = hashIntValDefault(clusterToClusterIdHash, clusterName, -1);
 	colToCluster[colIx] = clusterId;
 	if (clusterId == -1)
 	    warn("%s is in expression matrix but not in sample cluster file", clusterName);
 	}
     }
 
 
 /* Set up row for reading one row of matrix at a time. */
 char **matrixRow;
 AllocArray(matrixRow, colAlloc);
 int hitCount = 0, missCount = 0;
 double sumTotal = 0;
 dotForUserInit(100);
 for (;;)
     {
     /* Fetch next line and remember how long it is.  Just skip over lines that are empty or
      * start with # character. */
     int lineLength = 0;
     char *line;
     if (!lineFileNext(lf, &line, &lineLength))
         break;
     char *s = skipLeadingSpaces(line);
     char c = s[0];
     if (c == 0 || c == '#')
         continue;
 
     /* Chop it into tabs */
     int rowSize = chopByChar(line, '\t', matrixRow, colAlloc);
     lineFileExpectWords(lf, colCount, rowSize);
 
     char *geneName = matrixRow[0];
     struct hashEl *onePos = hashLookup(geneHash, geneName);
     if (onePos == NULL)
 	{
 	verbose(2, "Can't find gene %s in %s", geneName, geneBed);
 	++missCount;
 	continue;
 	}
     else
 	{
 	++hitCount;
 	}
 
     /* A gene may map multiple places.  This loop takes care of that */
     for (; onePos != NULL; onePos = hashLookupNext(onePos))
         {
 	char **geneBedVal = onePos->val;	// Get our bed as string array out of hash
 
 	/* Zero out cluster histogram */
 	int i;
 	for (i=0; i<clusterCount; ++i)
 	    {
 	    clusterTotal[i] = 0.0;
 	    clusterElements[i] = 0;
 	    }
 
 	/* Loop through rest of row filling in histogram */
 	for (i=1; i<colCount; ++i)
 	    {
 	    int clusterIx = colToCluster[i];
 	    char *textVal = matrixRow[i];
 	    // special case so common we parse out "0" inline
 	    double val = (textVal[0] == '0' && textVal[1] == 0) ? 0.0 : sqlDouble(textVal);
 	    sumTotal += val;
 	    int valCount = clusterElements[clusterIx];
 	    clusterElements[clusterIx] = valCount+1;
 	    if (doMedian)
 		{
 		if (valCount >= clusterSize[clusterIx])
 		    internalErr();
 		clusterSamples[clusterIx][valCount] = val;
 		}
 	    else
 		clusterTotal[clusterIx] += val;
 	    }
 
 	/* Output info - first six from the bed, then name2, then our barchart */
 	for (i=0; i<6; ++i)
 	    fprintf(f, "%s\t",  geneBedVal[i]);
 
 	char *name = geneBedVal[3];	// By bed definition it's fourth field
 	char *name2 = NULL;
 	if (nameToName2 != NULL)
 	    {
 	    char **namedRow = hashFindVal(nameToName2, name);
 	    if (namedRow != NULL)
 		name2 = namedRow[1];	    // [0] is name 
 	    else
 	        warn("Can't find %s in %s", name, clName2);
 	    }
 	else
 	    name2 = geneBedVal[name2Ix];
 	if (name2 == NULL)
 	    name2 = name;
 	fprintf(f, "%s\t", name2);
 
 	fprintf(f, "%d\t", clusterCount);
 	for (i=0; i<clusterCount; ++i)
 	    {
 	    if (i != 0)
 	       fprintf(f, ",");
 	    if (doMedian)
 		fprintf(f, "%g", doubleMedian(clusterElements[i], clusterSamples[i]));
 	    else
 		{
 		fprintf(f, "%g",  clusterTotal[i]/clusterElements[i]);
 		}
 	    }
 	
 	/* Data file offset info */
 	if (!clSimple)
 	    fprintf(f, "\t%lld\t%lld",  (long long)lineFileTell(lf), (long long)lineLength);
 
 	fprintf(f, "\n");
 	}
     dotForUser();
     }
 verbose(1, "\n%d genes found, %d (%0.2f%%) missed\n", hitCount, missCount, 100.0*missCount/(hitCount+missCount));
 if (!doMedian)
     {
     verbose(1, "matrix total %g, %d clusters, %g ave/cluster\n", 
 	sumTotal, clusterCount, sumTotal/clusterCount);
     }
 carefulClose(&f);
 }
 
 int main(int argc, char *argv[])
 /* Process command line. */
 {
 optionInit(&argc, argv, options);
 if (argc != 5)
     usage();
 clSimple = optionExists("simple");
 clMedian = optionExists("median");
 clName2 = optionVal("name2", clName2);
 clusterMatrixToBarChartBed(argv[1], argv[2], argv[3], argv[4]);
 return 0;
 }