9e970884e47accc964b1fac1e9bd356be9202e84
kent
  Thu Dec 31 16:55:22 2020 -0800
Rearranging command line.  Sample is always col0.  Added stats output file.

diff --git src/utils/matrixClusterColumns/matrixClusterColumns.c src/utils/matrixClusterColumns/matrixClusterColumns.c
index 6bc3dba..aa8c3ba 100644
--- src/utils/matrixClusterColumns/matrixClusterColumns.c
+++ src/utils/matrixClusterColumns/matrixClusterColumns.c
@@ -1,456 +1,483 @@
 /* matrixClusterColumns - Group the columns of a matrix into clusters, and output a matrix 
  * the with same number of rows and generally much fewer columns.. */
 #include "common.h"
 #include "linefile.h"
 #include "hash.h"
 #include "options.h"
 #include "obscure.h"
 #include "fieldedTable.h"
 #include "sqlNum.h"
 
 void usage()
 /* Explain usage and exit. */
 {
 errAbort(
   "matrixClusterColumns - Group the columns of a matrix into clusters, and output a matrix with\n"
   "the same number of rows and generally much fewer columns. Combines columns by taking mean.\n"
   "usage:\n"
-  "   matrixClusterColumns input meta.tsv sample cluster output.tsv [clusterCol output2 ... ]\n"
+  "   matrixClusterColumns input meta.tsv cluster outMatrix.tsv outStats.tsv [cluster2 outMatrix2.tsv outStats2.tsv ... ]\n"
   "where:\n"
   "   input is a file either in tsv format or in mtx (matrix mart sorted) format\n"
   "   meta.tsv is a table where the first row is field labels and the first column is sample ids\n"
-  "   sample is the name of the field with the sample (often single cell) id's\n"
   "   cluster is the name of the field with the cluster names\n"
   "You can produce multiple clusterings in the same pass through the input matrix by specifying\n"
-  "additional cluster/output pairs in the command line.\n"
+  "additional cluster/outMatrix/outStats triples in the command line.\n"
   "options:\n"
   "   -columnLabels=file.txt - a file with a line for each column, required for mtx inputs\n"
   "   -rowLabels=file.txt - a file with a label for each row, also required for mtx inputs\n"
   "   -makeIndex=index.tsv - output index tsv file with <matrix-col1><input-file-pos><line-len>\n"
   "   -median if set ouput median rather than mean cluster value\n"
   );
 }
 
 /* Command line validation table. */
 static struct optionSpec options[] = {
    {"columnLabels", OPTION_STRING},
    {"rowLabels", OPTION_STRING},
    {"makeIndex", OPTION_STRING},
    {"median", OPTION_BOOLEAN},
    {NULL, 0},
 };
 
 
 void readLineArray(char *fileName, int *retCount, char ***retLines)
 /* Return an array of strings, one for each line of file.  Return # of lines in file too */
 {
 /* This is sloppy with memory but it doesn't matter since we won't free it. */
 struct slName *el, *list = readAllLines(fileName);
 if (list == NULL)
     errAbort("%s is empty", fileName);
 int count = slCount(list);
 char **lines;
 AllocArray(lines, count);
 int i;
 for (i=0, el=list; i<count; ++i, el = el->next)
     {
     lines[i] = el->name;
     }
 *retCount = count;
 *retLines = lines;
 }
 
 int countNonzero(double *a, int size)
 /* Return number of nonzero items in array a */
 {
 int count = 0;
 while (--size >= 0)
     if (*a++ != 0.0)
         ++count;
 return count;
 }
 
 double sumArray(double *a, int size)
 /* Return sum of all items in array */
 {
 double sum = 0.0;
 while (--size >= 0)
     sum += *a++;
 return sum;
 }
 
 struct vMatrix
 /* Virtual matrix - little wrapper around a fielded table/lineFile combination
  * to help manage row-at-a-time access. */
     {
     struct vMatrix *next;
 
         /* kind of private fields */
     struct lineFile *lf;	    // Line file for tab-sep case
     struct fieldedTable *ft;	    // fielded table if a tab-sep file
     char **rowAsStrings;		    // Our row as an array of strings
 
 	/* From below are fields that yu can read but not change */
     double *rowAsNum;		    // Our fielded table result array of numbers
     char **rowLabels;		    // If non-NULL array of labels for each row
     char **colLabels;		    // Array of labels for each column
     int colCount;		    // Number of columns in a row
     int curRow;			    // Current row we are processing
     struct dyString *rowLabel;	    // Label associated with this line
     };
 
 struct vMatrix *vMatrixOpen(char *matrixFile, char *columnFile, char *rowFile)
 /* Figure out if it's a mtx or tgz file and open it */
 {
 /* Read in labels if there are any */
 char **columnLabels = NULL, **rowLabels = NULL;
 int columnCount = 0, rowCount = 0;
 if (columnFile != NULL)
     readLineArray(columnFile, &columnCount, &columnLabels);
 if (rowFile != NULL)
     readLineArray(rowFile, &rowCount, &rowLabels);
 
 struct vMatrix *v = needMem(sizeof(*v));
 struct lineFile *lf = v->lf = lineFileOpen(matrixFile, TRUE);
 struct fieldedTable *ft = v->ft = fieldedTableReadTabHeader(lf, NULL, 0);
 v->colCount = ft->fieldCount-1;	    // Don't include row label field 
 v->rowAsNum = needHugeMem(v->colCount * sizeof(v->rowAsNum[0]));
 v->rowAsStrings = needHugeMem(ft->fieldCount * sizeof(v->rowAsStrings[0]));
 if (columnLabels == NULL)
     columnLabels = ft->fields+1;	// +1 to skip over row label field
 v->rowLabels = rowLabels;
 v->colLabels = columnLabels;
 v->rowLabel = dyStringNew(32);
 return v;
 }
 
 void vMatrixClose(struct vMatrix **pV)
 /* Close up vMatrix */
 {
 struct vMatrix *v = *pV;
 if (v != NULL)
     {
     fieldedTableFree(&v->ft);
     freeMem(v->rowAsNum);
     freeMem(v->rowAsStrings);
     dyStringFree(&v->rowLabel);
     freez(pV);
     }
 }
 
 double *vMatrixNextRow(struct vMatrix *v)
 /* Return next row of matrix or NULL if at end of file */
 {
 int colCount = v->colCount;
 if (!lineFileNextRow(v->lf, v->rowAsStrings, colCount+1))
     return NULL;
 
 /* Save away the row label for later. */
 char *rowLabel;
 if (v->rowLabels)
     rowLabel = v->rowLabels[v->curRow];
 else
     rowLabel = v->rowAsStrings[0];
 dyStringClear(v->rowLabel);
 dyStringAppend(v->rowLabel, rowLabel);
 
 /* Convert ascii to floating point, with little optimization for the many zeroes we usually see */
 int i;
 for (i=1; i<=colCount; ++i)
     {
     char *str = v->rowAsStrings[i];
     double val = ((str[0] == '0' && str[1] == 0) ? 0.0 : sqlDouble(str));
     v->rowAsNum[i-1] = val;
     }
 v->curRow += 1;
 return v->rowAsNum;
 }
 
 struct clustering
 /* Stuff we need to cluster something.  This is something we might do
  * repeatedly to same input matrix */
     {
     struct clustering *next;
     char *clusterField;	    /* Field to cluster on */
-    char *outputFile;	    /* Where to put result */
+    char *outMatrixFile;    /* Where to put matrix result */
+    char *outStatsFile;	    /* Where to put stats result */
     int clusterMetaIx;	    /* Index of cluster field in meta table */
     int *colToCluster;	    /* Maps input matrix column to clustered column */
     int clusterCount;   /* Number of different values in column we are clustering */
     double *clusterTotal;  /* A place to hold totals for each cluster */
+    double *clusterGrandTotal;	/* Total over all rows */
     int *clusterElements;  /* A place to hold counts for each cluster */
     double *clusterResults; /* Results after clustering */
     struct hash *clusterSizeHash;   /* Keyed by cluster, int value is elements in cluster */
+    char **clusterNames;	    /* Holds name of each cluster */
     int *clusterSizes;	    /* An array that holds size of each cluster */
 
     /* Things needed by median handling */
     boolean doMedian;	/* If true we calculate median */
     double **clusterSamples; /* An array that holds an array big enough for all vals in cluster. */
 
-    FILE *file;		    /* output */
+    FILE *matrixFile;		    /* output */
     };
 
 
-struct clustering *clusteringNew(char *clusterField, char *outputFile, 
-    struct fieldedTable *metaTable, int sampleFieldIx, struct vMatrix *v, boolean doMedian)
+struct clustering *clusteringNew(char *clusterField, char *outMatrixFile, char *outStatsFile,
+    struct fieldedTable *metaTable, struct vMatrix *v, boolean doMedian)
 /* Make up a new clustering job structure */
 {
 struct clustering *job;
 AllocVar(job);
 job->clusterField = clusterField;
-job->outputFile = outputFile;
+job->outMatrixFile = outMatrixFile;
+job->outStatsFile = outStatsFile;
 int clusterFieldIx = job->clusterMetaIx = fieldedTableMustFindFieldIx(metaTable, clusterField);
 
 /* Make up hash of sample names with cluster name values 
  * and also hash of cluster names with size values */
 struct hash *sampleHash = hashNew(0);	/* Keyed by sample value is cluster */
 struct hash *clusterSizeHash = job->clusterSizeHash = hashNew(0);
 struct fieldedRow *fr;
 for (fr = metaTable->rowList; fr != NULL; fr = fr->next)
     {
     char **row = fr->row;
-    hashAdd(sampleHash, row[sampleFieldIx], row[clusterFieldIx]);
+    hashAdd(sampleHash, row[0], row[clusterFieldIx]);
     hashIncInt(clusterSizeHash, row[clusterFieldIx]);
     }
 
 /* Find all uniq cluster names */
 struct slName *nameList = NULL;
 struct hash *uniqHash = hashNew(0);
 for (fr = metaTable->rowList; fr != NULL; fr = fr->next)
     {
     char *cluster = fr->row[clusterFieldIx];
     if (hashLookup(uniqHash, cluster) == NULL)
         {
 	slNameAddHead(&nameList, cluster);
 	hashAdd(uniqHash, cluster, NULL);
 	}
     }
 hashFree(&uniqHash);
 
 /* Just alphabetize names for now */
 slNameSort(&nameList);
 
 /* Make up hash that maps cluster names to cluster ids */
 struct hash *clusterIxHash = hashNew(0);	/* Keyed by cluster, no value */
 struct slName *name;
 int i;
 for (name = nameList, i=0; name != NULL; name = name->next, ++i)
     hashAddInt(clusterIxHash, name->name, i);
 int clusterCount = job->clusterCount = clusterIxHash->elCount;
 
 /* Make up array that holds size of each cluster */
 AllocArray(job->clusterSizes, clusterCount);
+AllocArray(job->clusterNames, clusterCount);
 for (i = 0, name = nameList; i < clusterCount; ++i, name = name->next)
     {
     job->clusterSizes[i] = hashIntVal(job->clusterSizeHash, name->name);
+    job->clusterNames[i] = name->name;
     verbose(2, "clusterSizes[%d] = %d\n", i, job->clusterSizes[i]);
     }
 
 if (doMedian)
     {	
     /* Allocate arrays to hold number of samples and all sample vals for each cluster */
     job->doMedian = doMedian;
     AllocArray(job->clusterSamples, clusterCount);
     int clusterIx;
     for (clusterIx = 0; clusterIx < clusterCount; ++clusterIx)
 	{
 	double *samples;
 	AllocArray(samples, job->clusterSizes[clusterIx]);
 	job->clusterSamples[clusterIx] = samples;
 	}
     }
 
 /* Make up array that has -1 where no cluster available, otherwise output index */
 int colCount = v->colCount;
 int *colToCluster = job->colToCluster = needHugeMem(colCount * sizeof(colToCluster[0]));
 int colIx;
 int unclusteredColumns = 0, missCount = 0;
 for (colIx=0; colIx < colCount; colIx = colIx+1)
     {
     char *colName = v->colLabels[colIx];
     char *clusterName = hashFindVal(sampleHash, colName);
     colToCluster[colIx] = -1;
     if (clusterName != NULL)
         {
 	int clusterId = hashIntValDefault(clusterIxHash, clusterName, -1);
 	colToCluster[colIx] = clusterId;
 	if (clusterId == -1)
 	    {
 	    verbose(3, "%s is in expression matrix but not in sample cluster file", clusterName);
 	    ++missCount;
 	    }
 	}
     else
 	unclusteredColumns += 1;
     }
 verbose(1, "%d total columns, %d unclustered, %d misses\n", 
     colCount, unclusteredColumns, missCount);
 
 /* Allocate space for results for clustering one line */
 job->clusterResults = needHugeMem(clusterCount * sizeof(job->clusterResults[0]));
 
 /* Allocate a few more things */
 job->clusterTotal = needMem(clusterCount*sizeof(job->clusterTotal[0]));
+job->clusterGrandTotal = needMem(clusterCount*sizeof(job->clusterGrandTotal[0]));
 job->clusterElements = needMem(clusterCount*sizeof(job->clusterElements[0]));
 
 /* Open file - and write out header */
-FILE *f = job->file = mustOpen(job->outputFile, "w");
+FILE *f = job->matrixFile = mustOpen(job->outMatrixFile, "w");
 if (v->ft->startsSharp)
     fputc('#', f);
 
 /* First field name agrees with first column of matrix */
 fputs( v->ft->fields[0],f);
 
 /* Use our clusters for the rest of the names */
 for (name = nameList; name != NULL; name = name->next) 
     {
     fputc('\t', f);
     fputs(name->name, f);
     }
 fputc('\n', f);
 
+
+
 /* Clean up and return result */
 hashFree(&sampleHash);
 hashFree(&clusterIxHash);
 return job;
 }
 
+void outputClusterStats(struct clustering *job)
+/* Output statistics on each cluster in this job. */
+{
+FILE *f = mustOpen(job->outStatsFile, "w");
+fprintf(f, "#cluster\tcount\ttotal\n");
+int i;
+for (i=0; i<job->clusterCount; ++i)
+    {
+    fprintf(f, "%s\t%d\t%g\n", job->clusterNames[i], 
+	job->clusterElements[i], job->clusterGrandTotal[i]);
+    }
+carefulClose(&f);
+}
+
 void clusterRow(struct clustering *job, struct vMatrix *v, double *a)
 /* Process a row in a, outputting in job->file */
 {
 /* Zero out cluster histogram */
 double *clusterTotal = job->clusterTotal;
 int *clusterElements = job->clusterElements;
 int clusterCount = job->clusterCount;
 int i;
 for (i=0; i<clusterCount; ++i)
     {
     clusterTotal[i] = 0.0;
     clusterElements[i] = 0;
     }
 
 /* Loop through rest of row filling in histogram */
 int colCount = v->colCount;
 int *colToCluster = job->colToCluster;
 boolean doMedian = job->doMedian;
 for (i=0; i<colCount; ++i)
     {
     int clusterIx = colToCluster[i];
     if (clusterIx >= 0)
 	{
 	double val = a[i];
 	int valCount = clusterElements[clusterIx];
 	clusterElements[clusterIx] = valCount+1;
+	clusterTotal[clusterIx] += val;
 	if (doMedian)
 	    {
 	    if (valCount >= job->clusterSizes[clusterIx])
 		internalErr();
 	    job->clusterSamples[clusterIx][valCount] = val;
 	    }
-	else
-	    clusterTotal[clusterIx] += val;
 	}
     }
 
-/* Do output to file */
-FILE *f = job->file;
+/* Do output to file and grand totalling */
+FILE *f = job->matrixFile;
 fprintf(f, "%s", v->rowLabel->string);
+double *grandTotal = job->clusterGrandTotal;
 for (i=0; i<clusterCount; ++i)
     {
     fprintf(f, "\t");
+    double total = clusterTotal[i];
+    grandTotal[i] += total;
     double val;
     if (doMedian)
 	val = doubleMedian(clusterElements[i], job->clusterSamples[i]);
     else
-	val = clusterTotal[i]/clusterElements[i];
+	val = total/clusterElements[i];
     fprintf(f, "%g", val);
     }
 	
-	/* Data file offset info */
-
 fprintf(f, "\n");
 }
 
 
 
 
 void matrixClusterColumns(char *matrixFile, char *metaFile, char *sampleField,
-    int outputCount, char **clusterFields, char **outputFiles, char *outputIndex, boolean doMedian)
+    int outputCount, char **clusterFields, char **outMatrixFiles, char **outStatsFiles,
+    char *outputIndex, boolean doMedian)
 /* matrixClusterColumns - Group the columns of a matrix into clusters, and output a matrix 
  * the with same number of rows and generally much fewer columns.. */
 {
 FILE *fIndex = NULL;
 if (outputIndex)
     fIndex = mustOpen(outputIndex, "w");
 
 /* Load up metadata and make sure we have all of the cluster fields we need 
  * and fill out array of clusterIx corresponding to clusterFields in metaFile. */
 struct fieldedTable *metaTable = fieldedTableFromTabFile(metaFile, metaFile, NULL, 0);
-int sampleFieldIx = fieldedTableMustFindFieldIx(metaTable, sampleField);
 struct hash *metaHash = fieldedTableIndex(metaTable, sampleField);
 verbose(1, "Read %d rows from %s\n", metaHash->elCount, metaFile);
 
 /* Load up input matrix and labels */
 char *columnFile = optionVal("columnLabels", NULL);
 char *rowFile = optionVal("rowLabels", NULL);
 struct vMatrix *v = vMatrixOpen(matrixFile, columnFile, rowFile);
 verbose(1, "matrix %s has %d fields\n", matrixFile, v->colCount);
 
 /* Create a clustering for each output and find index in metaTable for each. */
 struct clustering *jobList = NULL, *job;
 int i;
 for (i=0; i<outputCount; ++i)
     {
-    job = clusteringNew(clusterFields[i], outputFiles[i], metaTable, sampleFieldIx, v, doMedian);
+    job = clusteringNew(clusterFields[i], outMatrixFiles[i], outStatsFiles[i], 
+			metaTable, v, doMedian);
     slAddTail(&jobList, job);
     }
 
 
 /* Chug through big matrix a row at a time clustering */
 dotForUserInit(100);
 for (;;)
   {
   double *a = vMatrixNextRow(v);
   if (a == NULL)
        break;
   if (fIndex)
       {
       fprintf(fIndex, "%s", v->rowLabel->string);
       struct lineFile *lf = v->lf;
       fprintf(fIndex, "\t%lld\t%lld\n",  (long long)lineFileTell(lf), (long long)lineFileTellSize(lf));
       }
   for (job = jobList; job != NULL; job = job->next)
       clusterRow(job, v, a);
   dotForUser();
   }
 fputc('\n', stderr);  // Cover last dotForUser
 
-/* Close files */
+/* Do stats and close files */
 for (job = jobList; job != NULL; job = job->next)
-    carefulClose(&job->file);
+    {
+    outputClusterStats(job);
+    carefulClose(&job->matrixFile);
+    }
 
 vMatrixClose(&v);
 carefulClose(&fIndex);
 }
 
 int main(int argc, char *argv[])
 /* Process command line. */
 {
 optionInit(&argc, argv, options);
 char *makeIndex = optionVal("makeIndex", NULL);
 int minArgc = 6;
-if (argc < minArgc || ((argc-minArgc)%2)!=0)  // Force minimum, even number
+if (argc < minArgc || ((argc-minArgc)%3)!=0)  // Force minimum, even number
     usage();
-int outputCount = 1 + (argc-minArgc)/2;	      // Add one since at minimum have 1
-char *clusterFields[outputCount], *outputFiles[outputCount];
+int outputCount = 1 + (argc-minArgc)/3;	      // Add one since at minimum have 1
+char *clusterFields[outputCount], *outMatrixFiles[outputCount], *outStatsFiles[outputCount];
 int i;
-char **pair = argv + minArgc - 2;
+char **triples = argv + minArgc - 3;
 for (i=0; i<outputCount; ++i)
     {
-    clusterFields[i] = pair[0];
-    outputFiles[i] = pair[1];
-    pair += 2;
+    clusterFields[i] = triples[0];
+    outMatrixFiles[i] = triples[1];
+    outStatsFiles[i] = triples[2];
+    triples += 3;
     }
 matrixClusterColumns(argv[1], argv[2], argv[3], 
-    outputCount, clusterFields, outputFiles, makeIndex, optionExists("median"));
+    outputCount, clusterFields, outMatrixFiles, outStatsFiles, makeIndex, optionExists("median"));
 return 0;
 }