e9cd3eef710ba3141d58ef119006b7d2327e5b7f
markd
  Wed Dec 9 13:52:01 2020 -0800
fixed accidently backout of master changes in the last merge

diff --git src/hg/hgPhyloPlace/treeToAuspiceJson.c src/hg/hgPhyloPlace/treeToAuspiceJson.c
index 7aae5eb..8f6030b 100644
--- src/hg/hgPhyloPlace/treeToAuspiceJson.c
+++ src/hg/hgPhyloPlace/treeToAuspiceJson.c
@@ -1,467 +1,464 @@
 /* Convert a (sub)tree with condensed nodes to JSON for Nextstrain to display, adding in sample
  * mutations, protein changes and metadata. */
 
 /* Copyright (C) 2020 The Regents of the University of California */
 
 #include "common.h"
 #include "hash.h"
 #include "hui.h"
 #include "jsonWrite.h"
 #include "linefile.h"
 #include "parsimonyProto.h"
 #include "phyloPlace.h"
 #include "phyloTree.h"
 #include "variantProjector.h"
 
 // Globals
 extern char *chrom;
 extern int chromSize;
 
 static void writeAuspiceMeta(FILE *outF, struct slName *subtreeUserSampleIds)
 /* Write metadata to configure Auspice display. */
 {
 fprintf(outF,
         "\"meta\": { "
         "\"title\": \"Subtree with %s", subtreeUserSampleIds->name);
 struct slName *sln;
 for (sln = subtreeUserSampleIds->next;  sln != NULL;  sln = sln->next)
     fprintf(outF, ", %s", sln->name);
 fputs("\", "
       "\"panels\": [ \"tree\"] , "
       "\"colorings\": [ "
       "  { \"key\": \"pangolin_lineage\", "
       "    \"title\": \"Pangolin lineage\", \"type\": \"categorical\" },"
       "  { \"key\": \"Nextstrain_clade\","
       "    \"scale\": [ [ \"19B\", \"#EC676D\" ], [ \"19A\", \"#F79E43\" ],"
       "        [ \"20A\", \"#B6D77A\" ], [ \"20C\", \"#8FD4ED\" ],"
       "        [ \"20B\", \"#A692C3\" ] ],"
       "    \"title\": \"Nextstrain Clade\", \"type\": \"categorical\" },"
       "  { \"key\": \"GISAID_clade\","
       "    \"scale\": [ [ \"S\", \"#EC676D\" ], [ \"L\", \"#F79E43\" ], [ \"O\", \"#F9D136\" ],"
       "        [ \"V\", \"#FAEA95\" ], [ \"G\", \"#B6D77A\" ], [ \"GH\", \"#8FD4ED\" ],"
       "        [ \"GR\", \"#A692C3\" ] ],"
       "    \"title\": \"GISAID Clade\", \"type\": \"categorical\" },"
       "  { \"key\": \"userOrOld\", "
       "    \"scale\": [ [ \"uploaded sample\", \"#CC0000\"] , [ \"GISAID sample\", \"#000000\"] ],"
       "    \"title\": \"Sample type\", \"type\": \"categorical\" }"
       "  ] , "
 //#*** Filters didn't seem to work... maybe something about the new fetch feature, or do I need to spcify in some other way?
 //#***      "\"filters\": [ \"GISAID_clade\", \"region\", \"country\", \"division\", \"author\" ], "
       "\"display_defaults\": { "
       "  \"branch_label\": \"nuc mutations\" "
       "}, "
       , outF);
 fprintf(outF,
         "\"description\": \"Dataset generated by [UShER web interface]"
         "(%shgPhyloPlace) using the "
         "[usher](https://github.com/yatisht/usher/) program.  "
 //#*** TODO: describe input from which tree was generated: user sample, version of tree, etc.
         , hLocalHostCgiBinUrl());
 fputs("If you have metadata you wish to display, you can now drag on a CSV file and it will be "
       "added into this view, [see here]("NEXTSTRAIN_DRAG_DROP_DOC") "
       "for more info.\"} ,"
       , outF);
 }
 
 static void jsonWriteObjectValue(struct jsonWrite *jw, char *name, char *value)
 /* Write an object with one member, "value", set to value, as most Auspice node attributes are
  * formatted. */
 {
 jsonWriteObjectStart(jw, name);
 jsonWriteString(jw, "value", value);
 jsonWriteObjectEnd(jw);
 }
 
 static void jsonWriteLeafNodeAttributes(struct jsonWrite *jw, char *name,
                                         struct sampleMetadata *met, boolean isUserSample,
                                         char **retUserOrOld, char **retNClade, char **retGClade,
                                         char **retLineage)
 /* Write elements of node_attrs for a sample which may be preexisting and in our metadata hash,
  * or may be a new sample from the user.  Set rets for color categories so parent branches can
  * determine their color categories. */
 {
 *retUserOrOld = isUserSample ? "uploaded sample" : "GISAID sample";
 jsonWriteObjectValue(jw, "userOrOld", *retUserOrOld);
 if (met && met->date)
     jsonWriteObjectValue(jw, "date", met->date);
 if (met && met->author)
     {
     jsonWriteObjectValue(jw, "author", met->author);
     // Note: Nextstrain adds paper_url and title when available; they also add author and use
     // a uniquified value (e.g. "author": "Wenjie Tan et al" / "value": "Wenjie Tan et al A")
     }
 *retNClade = isUserSample ? "uploaded sample" : (met && met->nClade) ? met->nClade : NULL;
 if (isNotEmpty(*retNClade))
     jsonWriteObjectValue(jw, "Nextstrain_clade", *retNClade);
 *retGClade = isUserSample ? "uploaded sample" : (met && met->gClade) ? met->gClade : NULL;
 if (isNotEmpty(*retGClade))
     jsonWriteObjectValue(jw, "GISAID_clade", *retGClade);
 *retLineage = isUserSample ? "uploaded sample" :
                              (met && met->lineage) ? met->lineage : NULL;
 if (isNotEmpty(*retLineage))
     jsonWriteObjectValue(jw, "pangolin_lineage", *retLineage);
 if (met && met->epiId)
     jsonWriteObjectValue(jw, "gisaid_epi_isl", met->epiId);
 if (met && met->gbAcc)
     jsonWriteObjectValue(jw, "genbank_accession", met->gbAcc);
 if (met && met->country)
     jsonWriteObjectValue(jw, "country", met->country);
 if (met && met->division)
     jsonWriteObjectValue(jw, "division", met->division);
 if (met && met->location)
     jsonWriteObjectValue(jw, "location", met->location);
 if (met && met->countryExp)
     jsonWriteObjectValue(jw, "country_exposure", met->countryExp);
 if (met && met->divExp)
     jsonWriteObjectValue(jw, "division_exposure", met->divExp);
 if (met && met->origLab)
     jsonWriteObjectValue(jw, "originating_lab", met->origLab);
 if (met && met->subLab)
     jsonWriteObjectValue(jw, "submitting_lab", met->subLab);
 if (met && met->region)
     jsonWriteObjectValue(jw, "region", met->region);
 }
 
 static void jsonWriteBranchNodeAttributes(struct jsonWrite *jw, char *userOrOld,
                                           char *nClade, char *gClade, char *lineage)
 /* Write elements of node_attrs for a branch. */
 {
 if (userOrOld)
     jsonWriteObjectValue(jw, "userOrOld", userOrOld);
 if (nClade)
     jsonWriteObjectValue(jw, "Nextstrain_clade", nClade);
 if (gClade)
     jsonWriteObjectValue(jw, "GISAID_clade", gClade);
 if (lineage)
     jsonWriteObjectValue(jw, "pangolin_lineage", lineage);
 }
 
 struct geneInfo
 /* Information sufficient to determine whether a genome change causes a coding change. */
     {
     struct geneInfo *next;
     struct psl *psl;        // Alignment of transcript to genome
     struct dnaSeq *txSeq;   // Transcript sequence
     };
 
 static boolean changesProtein(struct singleNucChange *snc, struct geneInfo *gi,
                               struct seqWindow *gSeqWin,
                               int *retAaStart, char *retOldAa, char *retNewAa)
 /* If snc changes the coding sequence of gene, return TRUE and set ret values accordingly
  * (note amino acid values are single-base not strings). */
 {
 boolean isCodingChange = FALSE;
 if (snc->chromStart < gi->psl->tEnd && snc->chromStart >= gi->psl->tStart)
     {
     struct bed3 gBed3 = { NULL, chrom, snc->chromStart, snc->chromStart+1 };
     char gAlt[2];
     safef(gAlt, sizeof(gAlt), "%c", snc->newBase);
     if (!sameString(gi->psl->strand, "+"))
         errAbort("changesProtein: only worlds for psl->strand='+', but gene '%s' has strand '%s'",
                  gi->psl->qName, gi->psl->strand);
     struct vpTx *vpTx = vpGenomicToTranscript(gSeqWin, &gBed3, gAlt, gi->psl, gi->txSeq);
     if (vpTx->start.region == vpExon)
         {
         int aaStart = vpTx->start.txOffset / 3;
         int codonStart = aaStart * 3;
         char newCodon[4];
         safencpy(newCodon, sizeof newCodon, gi->txSeq->dna + codonStart, 3);
         int codonOffset = vpTx->start.txOffset - codonStart;
         assert(codonOffset < sizeof newCodon);
         newCodon[codonOffset] = snc->newBase;
         char oldAa = lookupCodon(gi->txSeq->dna + codonStart);
         char newAa = lookupCodon(newCodon);
         if (newAa != oldAa)
             {
             isCodingChange = TRUE;
             *retAaStart = aaStart;
             *retOldAa = oldAa;
             *retNewAa = newAa;
             }
         }
     vpTxFree(&vpTx);
     }
 return isCodingChange;
 }
 
 static struct slPair *getAaMutations(struct singleNucChange *sncList, struct geneInfo *geneInfoList,
                                      struct seqWindow *gSeqWin)
 /* Given lists of SNVs and genes, return a list of pairs of { gene name, AA change list }. */
 {
 struct slPair *geneChangeList = NULL;
 struct geneInfo *gi;
 for (gi = geneInfoList;  gi != NULL;  gi = gi->next)
     {
     struct slName *aaChangeList = NULL;
     struct singleNucChange *snc;
     for (snc = sncList;  snc != NULL;  snc = snc->next)
         {
         if (snc->chromStart < gi->psl->tEnd && snc->chromStart >= gi->psl->tStart)
             {
             int aaStart;
             char oldAa, newAa;
             if (changesProtein(snc, gi, gSeqWin, &aaStart, &oldAa, &newAa))
                 {
                 char aaChange[32];
                 safef(aaChange, sizeof aaChange, "%c%d%c", oldAa, aaStart+1, newAa);
                 slNameAddHead(&aaChangeList, aaChange);
                 }
             }
         }
     if (aaChangeList != NULL)
         {
         slReverse(&aaChangeList);
         slAddHead(&geneChangeList, slPairNew(gi->psl->qName, aaChangeList));
         }
     }
 slReverse(&geneChangeList);
 return geneChangeList;
 }
 
 static void jsonWriteBranchAttrs(struct jsonWrite *jw, struct phyloTree *node,
                                  struct geneInfo *geneInfoList, struct seqWindow *gSeqWin)
 /* Write mutations (if any).  If node is not a leaf, write label for mutations at this node. */
 {
 if (node->priv != NULL)
     {
     struct singleNucChange *sncList = node->priv;
     struct slPair *geneAaMutations = getAaMutations(sncList, geneInfoList, gSeqWin);
     jsonWriteObjectStart(jw, "branch_attrs");
     if (node->numEdges > 0)
         {
         jsonWriteObjectStart(jw, "labels");
         struct singleNucChange *snc = sncList;
         struct dyString *dy = dyStringCreate("%c%d%c",
                                              snc->parBase, snc->chromStart+1, snc->newBase);
         for (snc = sncList->next;  snc != NULL;  snc = snc->next)
             dyStringPrintf(dy, ",%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase);
         jsonWriteString(jw, "nuc mutations", dy->string);
         dyStringClear(dy);
         struct slPair *geneAaMut;
         for (geneAaMut = geneAaMutations;  geneAaMut != NULL;  geneAaMut = geneAaMut->next)
             {
             struct slName *aaMut;
             for (aaMut = geneAaMut->val;  aaMut != NULL;  aaMut = aaMut->next)
                 {
                 dyStringAppendSep(dy, ",");
                 dyStringPrintf(dy, "%s:%s", geneAaMut->name, aaMut->name);
                 }
             }
         if (isNotEmpty(dy->string))
             jsonWriteString(jw, "aa mutations", dy->string);
         dyStringFree(&dy);
         jsonWriteObjectEnd(jw);
         }
     jsonWriteObjectStart(jw, "mutations");
     struct slPair *geneAaMut;
     for (geneAaMut = geneAaMutations;  geneAaMut != NULL;  geneAaMut = geneAaMut->next)
         {
         jsonWriteListStart(jw, geneAaMut->name);
         struct slName *aaMut;
         for (aaMut = geneAaMut->val;  aaMut != NULL;  aaMut = aaMut->next)
             jsonWriteString(jw, NULL, aaMut->name);
         jsonWriteListEnd(jw);
         }
     jsonWriteListStart(jw, "nuc");
     struct singleNucChange *snc;
     for (snc = sncList;  snc != NULL;  snc = snc->next)
         jsonWriteStringf(jw, NULL, "%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase);
     jsonWriteListEnd(jw);
     jsonWriteObjectEnd(jw);  // mutations
     jsonWriteObjectEnd(jw); // branch_attrs
     }
 }
 
 struct auspiceJsonInfo
 /* Collection of a bunch of things used when writing out auspice JSON for a subtree, so the
  * recursive function doesn't need a dozen args. */
     {
     struct jsonWrite *jw;
     struct slName *subtreeUserSampleIds;  // Subtree node names for user samples (not from big tree)
     struct geneInfo *geneInfoList;        // Transcript seq & alignment for predicting AA change
     struct seqWindow *gSeqWin;            // Reference genome seq for predicting AA change
     struct hash *sampleMetadata;          // Sample metadata for decorating tree
     int nodeNum;                          // For generating sequential node ID (in absence of name)
     };
 
 static int cmpstringp(const void *p1, const void *p2)
 /* strcmp on pointers to strings, as in 'man qsort' but tolerate NULLs */
 {
 char *s1 = *(char * const *)p1;
 char *s2 = *(char * const *)p2;
 if (s1 && s2)
     return strcmp(s1, s2);
 else if (s1 && !s2)
     return 1;
 else if (s2 && !s1)
     return -1;
 return 0;
 }
 
 static char *majorityMaybe(char *array[], int arraySize)
 /* Sort array and if a majority of its values are the same then return that value; otherwise NULL. */
 {
 if (arraySize < 1)
     return NULL;
 qsort(array, arraySize, sizeof array[0], cmpstringp);
 char *maxRunVal = array[0];
 int runLength = 1, maxRunLength = 1;
 int i;
 for (i = 1;  i < arraySize;  i++)
     {
     if (sameOk(array[i], array[i-1]))
         {
         runLength++;
         if (runLength > maxRunLength)
             {
             maxRunLength = runLength;
             maxRunVal = array[i];
             }
         }
     else
         runLength = 1;
     }
 return (maxRunLength > (arraySize >> 1)) ? maxRunVal : NULL;
 }
 
 static void rTreeToAuspiceJson(struct phyloTree *node, int depth, struct auspiceJsonInfo *aji,
                                char **retUserOrOld, char **retNClade, char **retGClade,
                                char **retLineage)
 /* Write Augur/Auspice V2 JSON for tree.  Enclosing object start and end are written by caller. */
 {
 if (node->priv)
     {
     struct singleNucChange *sncList = node->priv;
     depth += slCount(sncList);
     }
 boolean isUserSample = FALSE;
 if (node->ident->name)
     isUserSample = slNameInList(aji->subtreeUserSampleIds, node->ident->name);
 char *name = node->ident->name;
 struct sampleMetadata *met = name ? metadataForSample(aji->sampleMetadata, name) : NULL;
-if (!isUserSample && met && met->strain)
-    // Some of Rob's tree names are outdated; use latest from metadata.
-    name = met->strain;
 if (name)
     jsonWriteString(aji->jw, "name", name);
 else
     jsonWriteStringf(aji->jw, "name", "NODE%d", aji->nodeNum++);
 jsonWriteBranchAttrs(aji->jw, node, aji->geneInfoList, aji->gSeqWin);
 if (node->numEdges > 0)
     {
     jsonWriteListStart(aji->jw, "children");
     char *kidUserOrOld[node->numEdges];
     char *kidNClade[node->numEdges];
     char *kidGClade[node->numEdges];
     char *kidLineage[node->numEdges];
     int i;
     for (i = 0;  i < node->numEdges;  i++)
         {
         jsonWriteObjectStart(aji->jw, NULL);
         rTreeToAuspiceJson(node->edges[i], depth, aji,
                            &kidUserOrOld[i], &kidNClade[i], &kidGClade[i], &kidLineage[i]);
         jsonWriteObjectEnd(aji->jw);
         }
     jsonWriteListEnd(aji->jw);
     if (retUserOrOld)
         *retUserOrOld = majorityMaybe(kidUserOrOld, node->numEdges);
     if (retNClade)
         *retNClade = majorityMaybe(kidNClade, node->numEdges);
     if (retGClade)
         *retGClade = majorityMaybe(kidGClade, node->numEdges);
     if (retLineage)
         *retLineage = majorityMaybe(kidLineage, node->numEdges);
     }
 jsonWriteObjectStart(aji->jw, "node_attrs");
 jsonWriteDouble(aji->jw, "div", depth);
 if (node->numEdges == 0)
     jsonWriteLeafNodeAttributes(aji->jw, name, met, isUserSample,
                                 retUserOrOld, retNClade, retGClade, retLineage);
 else if (retUserOrOld && retGClade && retLineage)
     jsonWriteBranchNodeAttributes(aji->jw, *retUserOrOld, *retNClade, *retGClade, *retLineage);
 jsonWriteObjectEnd(aji->jw);
 }
 
 struct phyloTree *phyloTreeNewNode(char *name)
 /* Alloc & return a new node with no children. */
 {
 struct phyloTree *node;
 AllocVar(node);
 AllocVar(node->ident);
 node->ident->name = cloneString(name);
 return node;
 }
 
 struct geneInfo *getGeneInfoList(char *bigGenePredFile, struct dnaSeq *refGenome)
 /* If config.ra has a source of gene annotations, then return the gene list. */
 {
 struct geneInfo *geneInfoList = NULL;
 if (isNotEmpty(bigGenePredFile) && fileExists(bigGenePredFile))
     {
     struct bbiFile *bbi = bigBedFileOpen(bigGenePredFile);
     struct lm *lm = lmInit(0);
     struct bigBedInterval *bb, *bbList = bigBedIntervalQuery(bbi, chrom, 0, chromSize, 0, lm);
     for (bb = bbList;  bb != NULL;  bb = bb->next)
         {
         struct genePredExt *gp = genePredFromBigGenePred(chrom, bb);
         if (gp->strand[0] != '+')
             errAbort("getGeneInfoList: strand must be '+' but got '%s' for gene %s",
                      gp->strand, gp->name);
         int txLen = 0;
         int ex;
         for (ex = 0;  ex < gp->exonCount;  ex++)
             txLen += (gp->exonEnds[ex] - gp->exonStarts[ex]);
         char *seq = needMem(txLen);
         int txOffset = 0;
         for (ex = 0;  ex < gp->exonCount;  ex++)
             {
             int exonLen = gp->exonEnds[ex] - gp->exonStarts[ex];
             safencpy(seq+txOffset, txLen+1-txOffset, refGenome->dna+gp->exonStarts[ex], exonLen);
             txOffset += exonLen;
             }
         struct geneInfo *gi;
         AllocVar(gi);
         gi->psl = genePredToPsl((struct genePred *)gp, chromSize, txLen);
         gi->txSeq = newDnaSeq(seq, txLen, gp->name2);
         slAddHead(&geneInfoList, gi);
         }
     lmCleanup(&lm);
     bigBedFileClose(&bbi);
     }
 slReverse(&geneInfoList);
 return geneInfoList;
 }
 
 void treeToAuspiceJson(struct subtreeInfo *sti, char *db, struct dnaSeq *ref,
                        char *bigGenePredFile, struct hash *sampleMetadata, char *jsonFile)
 /* Write JSON for tree in Nextstrain's Augur/Auspice V2 JSON format
  * (https://github.com/nextstrain/augur/blob/master/augur/data/schema-export-v2.json). */
 {
 struct phyloTree *tree = sti->subtree;
 FILE *outF = mustOpen(jsonFile, "w");
 fputs("{ \"version\": \"v2\", ", outF);
 writeAuspiceMeta(outF, sti->subtreeUserSampleIds);
 // The meta part is mostly constant & easier to just write out, but jsonWrite is better for the
 // nested tree structure.
 struct jsonWrite *jw = jsonWriteNew();
 jsonWriteObjectStart(jw, "tree");
 int nodeNum = 10000; // Auspice.us starting node number for newick -> json
 int depth = 0;
 
 // Add an extra root node because otherwise Auspice won't draw branch from big tree root to subtree
 struct phyloTree *root = phyloTreeNewNode("wrapper");
 phyloAddEdge(root, tree);
 tree = root;
 struct geneInfo *geneInfoList = getGeneInfoList(bigGenePredFile, ref);
 struct seqWindow *gSeqWin = chromSeqWindowNew(db, chrom, 0, chromSize);
 struct auspiceJsonInfo aji = { jw, sti->subtreeUserSampleIds, geneInfoList, gSeqWin,
                                sampleMetadata, nodeNum };
 rTreeToAuspiceJson(tree, depth, &aji, NULL, NULL, NULL, NULL);
 chromSeqWindowFree(&gSeqWin);
 jsonWriteObjectEnd(jw);
 fputs(jw->dy->string, outF);
 jsonWriteFree(&jw);
 fputs("}", outF);
 carefulClose(&outF);
 }