70952dc60bde84f731bfae4d9a7af4ba50b29bdb jnavarr5 Wed May 12 07:02:54 2021 -0700 Updating redirected links found the the uiLinks cronjob for danRer3, no Redmine diff --git src/hg/makeDb/trackDb/augustusGene.html src/hg/makeDb/trackDb/augustusGene.html index 619c816..e54872f 100644 --- src/hg/makeDb/trackDb/augustusGene.html +++ src/hg/makeDb/trackDb/augustusGene.html @@ -1,106 +1,106 @@ <h2>Description</h2> <p> This track shows <i>ab initio</i> predictions from the program <a href="http://bioinf.uni-greifswald.de/augustus/" target="_blank">AUGUSTUS</a> (version 3.1). The predictions are based on the genome sequence alone. </p> <p> For more information on the different gene tracks, see our <a target=_blank href="/FAQ/FAQgenes.html">Genes FAQ</a>.</p> <h2>Methods</h2> <p> Statistical signal models were built for splice sites, branch-point patterns, translation start sites, and the poly-A signal. Furthermore, models were built for the sequence content of protein-coding and non-coding regions as well as for the length distributions of different exon and intron types. Detailed descriptions of most of these different models can be found in Mario Stanke's -<a href="http://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B3F8-4" target="_blank">dissertation</a>. +<a href="https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B3F8-4" target="_blank">dissertation</a>. This track shows the most likely gene structure according to a Semi-Markov Conditional Random Field model. Alternative splicing transcripts were obtained with a sampling algorithm (<tt>--alternatives-from-sampling=true --sample=100 --minexonintronprob=0.2 --minmeanexonintronprob=0.5 --maxtracks=3 --temperature=2</tt>). </p> <p> The different models used by Augustus were trained on a number of different species-specific gene sets, which included 1000-2000 training gene structures. The <tt>--species</tt> option allows one to choose the species used for training the models. Different training species were used for the <tt>--species</tt> option when generating these predictions for different groups of assemblies. <table class="stdTbl"> <tr> <td align=center><b>Assembly Group</b></td> <td align=center><b>Training Species</b></td> </tr> <tr> <td align=center>Fish</td> <td align=center><tt>zebrafish</tt> </tr> <tr> <td align=center>Birds</td> <td align=center><tt>chicken</tt> </tr> <tr> <td align=center>Human and all other vertebrates</td> <td align=center><tt>human</tt> </tr> <tr> <td align=center>Nematodes</td> <td align=center><tt>caenorhabditis</tt></td> </tr> <tr> <td align=center>Drosophila</td> <td align=center><tt>fly</tt></td> </tr> <tr> <td align=center><em>A. mellifera</em></td> <td align=center><tt>honeybee1</tt></td> </tr> <tr> <td align=center><em>A. gambiae</em></td> <td align=center><tt>culex</tt></td> </tr> <tr> <td align=center><em>S. cerevisiae</em></td> <td align=center><tt>saccharomyces</tt></td> </tr> </table> <p> This table describes which training species was used for a particular group of assemblies. When available, the closest related training species was used. </p> <h2>Credits</h2> Thanks to the <a href="https://math-inf.uni-greifswald.de/en/department/about-us/employees/prof-dr-mario-stanke-english/" target="_blank">Stanke lab</a> for providing the AUGUSTUS program. The training for the <tt>chicken</tt> version was done by Stefanie König and the training for the <tt>human</tt> and <tt>zebrafish</tt> versions was done by Mario Stanke. <h2>References</h2> <p> Stanke M, Diekhans M, Baertsch R, Haussler D. <a href="https://academic.oup.com/bioinformatics/article/24/5/637/202844/Using-native-and-syntenically-mapped-cDNA" target="_blank"> Using native and syntenically mapped cDNA alignments to improve de novo gene finding</a>. <em>Bioinformatics</em>. 2008 Mar 1;24(5):637-44. PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/18218656" target="_blank">18218656</a> </p> <p> Stanke M, Waack S. <a href="https://academic.oup.com/bioinformatics/article/19/suppl_2/ii215/180603/Gene-prediction-with-a-hidden-Markov-model-and-a" target="_blank"> Gene prediction with a hidden Markov model and a new intron submodel</a>. <em>Bioinformatics</em>. 2003 Oct;19 Suppl 2:ii215-25. PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/14534192" target="_blank">14534192</a> </p>