c53ffb9020440066c1badd6b2dede9f187a86658
mspeir
  Thu May 26 16:21:23 2022 -0700
Added GTEx eQTL DAP-G track, changes to GTEx eQTL CAVIAR track. refs #29511

diff --git src/hg/makeDb/doc/hg38/gtex.txt src/hg/makeDb/doc/hg38/gtex.txt
index 504f861..9f9dbaf 100644
--- src/hg/makeDb/doc/hg38/gtex.txt
+++ src/hg/makeDb/doc/hg38/gtex.txt
@@ -1,397 +1,709 @@
 #############################################################################
 # GTEx V6 (October 2015) Kate
 # Create BED from hgFixed tables (see doc/gtex)
 # Reloading during QA of track (fixing gene classes, adding scores).  (March 2016) Kate
 
 cd /hive/data/outside/gtex/V6
 
 # see doc/hg19.txt for how this genePred was made
 set chain = /hive/data/genomes/hg19/bed/liftOver/hg19ToHg38.over.chain.gz
 liftOver -genePred gencodeV19.hg19.genePred $chain gtexGeneModelV6.hg38.genePred \
                 gencode.V19.hg38.unmapped
 # 926 unmapped
 hgLoadGenePred hg38 gtexGeneModelV6 gtexGeneModelV6.hg38.genePred
 
 # OLD: creates gtexGeneModelV6.hg38.genePred
 # OLD: NOTE: drops 192 transcripts.  One I spot-checked indeed didn't exist in our hg38 genes
 
 cd /hive/data/genomes/hg38/bed
 mkdir -p gtex
 cd gtex
 
 # table renamed to gtexGeneModel later
 
 # Use latest GENCODE attrs file to get biotypes
 
 # create bed table
 ~/kent/src/hg/makeDb/outside/hgGtexGeneBed/hgGtexGeneBed  hg38 -gtexVersion=V6 \
         -noLoad -gencodeVersion=$gencodeVersion gtexGeneBedV6 -verbose=2 >&! makeGeneBed.log
 
 # 45 genes not found in GENCODE attributes table
 
 #Max score: 219385.906250
 
 wc -l *.tab
 wc -l *.tab
 52896 gtexGeneBedV6.tab
 # 55810 gtexGeneBedV6.tab
 
 # exploratory for assigning score based on sum of scores (expScores field)
 set bedScore = ~/kent/src/utils/bedScore/bedScore
 $bedScore -col=10 -minScore=1 -method=std2 gtexGeneBedV6.tab gtexGeneBedV6.std2.bed
 $bedScore -col=10 -minScore=1 -method=encode gtexGeneBedV6.tab gtexGeneBedV6.encode.bed
 $bedScore -col=10 -minScore=1 -method=reg gtexGeneBedV6.tab gtexGeneBedV6.reg.bed
 $bedScore -col=10 -minScore=1 -method=asinh gtexGeneBedV6.tab gtexGeneBedV6.asinh.bed
 
 $bedScore -col=10 -minScore=1 -method=reg -log gtexGeneBedV6.tab gtexGeneBedV6.reg.log.bed
 $bedScore -log -col=10 -minScore=1 -method=std2 gtexGeneBedV6.tab gtexGeneBedV6.std2.log.bed
 $bedScore -log -col=10 -minScore=1 -method=encode gtexGeneBedV6.tab gtexGeneBedV6.encode.log.bed
 $bedScore -log -col=10 -minScore=1 -method=asinh gtexGeneBedV6.tab gtexGeneBedV6.asinh.log.bed
 
 # Using -log -method=encode, as this is closest to density plot of all scores
 # as here: GtexTotalExpressionDensity.png, GtexTotalExpressionFrequency.png
 textHistogram -real -autoScale=14 -log -col=5 gtexGeneBedV6.encode.log.bed
 1.000000 ************************************************************ 22889
 72.357214 *************************************************** 4862
 143.714428 ************************************************** 4199
 215.071643 ************************************************* 3931
 286.428857 ************************************************** 4329
 357.786071 *************************************************** 5419
 429.143285 ************************************************** 4472
 500.500500 ********************************************* 1953
 571.857714 ************************************** 564
 643.214928 ******************************** 200
 714.572142 ************************* 61
 785.929356 *********** 6
 857.286571 ******** 4
 928.643785 ************ 7
 
 $bedScore -col=10 -minScore=0 -log -method=encode gtexGeneBedV6.tab gtexGeneBedV6.bed
 
 
 # load up
 set lib = ~/kent/src/hg/lib
 
 hgLoadBed hg38 -noBin -tab -type=bed6+4 \
         -as=$lib/gtexGeneBed.as -sqlTable=$lib/gtexGeneBed.sql -renameSqlTable \
                 gtexGeneBedNewV6 gtexGeneBedV6.bed
 
 # Add GTEx to Gene Sorter (2016-08-18 kate)
 # See hg/near/makeNear.doc
 
 #############################################################################
 # GTEx V8 (Apr 2020) Kate
 # Create BED from hgFixed tables (see doc/gtex)
  
 # Load gene models (Gencode V26 transcript union from GTEx)
 
 cd /hive/data/outside/gtex/V8/rnaSeq
 gtfToGenePred gencode.v26.GRCh38.genes.gtf gencodeV26.hg38.genePred \
                 -infoOut=gtexGeneModelInfoV8.tab
 hgLoadGenePred hg38 gtexGeneModelV8 gencodeV26.hg38.genePred
 
 # Get transcript for each gene (why ?)
 tail -n +2 gtexGeneModelInfoV8.tab | awk '{printf("%s\t%s\n", $1, $9)}' > gtexGeneTranscriptsV8.tab
 #hgLoadSqlTab hgFixed gtexTranscriptV8 ~/kent/src/hg/lib/gtexTranscript.sql gtexGeneTranscriptsV8.tab
 # no schema (or table on hgwdev.hgFixed)
 
 # Load BED table
 cd /hive/data/genomes/hg38/bed/gtex
 mkdir V8
 cd V8
 
 set gencode = V26
 ~/kent/src/hg/makeDb/outside/hgGtexGeneBed/hgGtexGeneBed \
         hg38 -noLoad -gtexVersion=V8 -gencodeVersion=$gencode gtexGeneV8 -verbose=2 >&! log.txt &
 
 Reading wgEncodeGencodeAttrs table
 Reading gtexGeneModelV8 table
 Reading gtexTissueMedian table
 Writing tab file gtexGeneV8
 Max score: 267400.000000
 
 # Add scores
 set bedScore = ~/kent/src/utils/bedScore/bedScore
 $bedScore -col=10 -minScore=0 -log -method=encode gtexGeneV8.tab gtexGeneBedV8.bed
 textHistogram -real -autoScale=14 -log -col=5 gtexGeneBedV8.bed
 0.000000 ************************************************************ 21287
 71.428643 **************************************************** 5635
 142.857286 **************************************************** 5513
 214.285929 *************************************************** 4683
 285.714571 *************************************************** 4480
 357.143214 *************************************************** 4748
 428.571857 **************************************************** 5466
 500.000500 ************************************************ 3117
 571.429143 ***************************************** 911
 642.857786 ********************************* 252
 714.286429 ************************** 81
 785.715071 ************** 11
 857.143714 ******** 4
 928.572357 *************** 12
 
 # load up
 set lib = ~/kent/src/hg/lib
 hgLoadBed hg38 -noBin -tab -type=bed6+4 \
         -as=$lib/gtexGeneBed.as -sqlTable=$lib/gtexGeneBed.sql -renameSqlTable \
                 gtexGeneV8 gtexGeneBedV8.bed
 #Read 56200 elements of size 10 from gtexGeneBedV8.bed
 
 
 ### TODO 
 # Add GTEx to Gene Sorter (2016-08-18 kate)
 # See hg/near/makeNear.doc
 
 #############################################################################
-# GTEx V8 cis-eQTLs CAVIAR High Confidence (Sept 2021) Matt
+# GTEx V8 cis-eQTLs CAVIAR High Confidence (Apr 2022) Matt
 
 cd /hive/data/genomes/hg38/bed/gtex/V8/eQtl/finemap_CAVIAR
 
-# Tar files were downloaded from https://gtexportal.org/home/datasets#filesetFilesDiv15
-# This file was used for this track:
+# Download files from
 wget https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_CAVIAR.tar
-# Then unpacked
+# unpack files
+tar xvf GTEx_v8_finemapping_CAVIAR.tar
+
 # Other files used:
 # Lookup table for all variants genotyped in GTEx
 wget https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz
 # Gene-level model based on the GENCODE 26 transcript model, where isoforms were collapsed to a single transcript per gene.
 wget https://storage.googleapis.com/gtex_analysis_v8/reference/gencode.v26.GRCh38.genes.gtf
 
 # Initially planned to use this file: # CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz
 # as it seemed to be a filtered subset of eQTLs
 # Description from GTEx_v8_finemapping_CAVIAR/README.txt
 # ***CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz --> is a single file for all GTEx tissues and all eGene where we report
 # all the high causal variants (variants that have posterior probability of > 0.1).
 
 # Sample header line:
 # TISSUE  GENE    eQTL    CHROM   POS     Probability
 # Brain_Caudate_basal_ganglia     ENSG00000248485.1       1_161274374     1       161274374       0.157456
 
 # However, the names/positions in the eQTL column are not unique meaning
 # We want file with unique variant/eQTL names that match those in the GTEx
 # variant mapping file: GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz
 # Looks like the CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz has names 
 # that match the names in the variant/eQTL mapping file
 
 # Description from GTEx_v8_finemapping_CAVIAR/README.txt
 # ***CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz  —> is a single file for all GTEx tissues and all eGenes where we reported
 # the CPP (Causal Posterior Probability). Each eQTL contains the allele information. Sample header file:
-
 # TISSUE  GENE    eQTL    CHROM   POS Probability
 # Brain_Caudate_basal_ganglia ENSG00000248485.1   chr1_161274374_G_A_b38  1   161274374   0.157456
 
 # So, take NOCUTOFF_with_Allele file and then filter for probability >0.1 (which is how HighConfidentVariants file was created according to GTEx README)
 zcat CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz | awk '$6 > 0.1' | gzip -c > CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz
 
 # Confirm that it has the same size as original HighConfidentVariants file
 zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz | wc -l
 1257158
 zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz | wc -l
 1257158
 
 # There seem to 31 duplicate eQTLs, meaning that the two lines for these entries are duplicated (probability values, etc.)
 # These will essentially be collapsed into a single entry by the buildInteract script
 zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz | sort | uniq -c | sort -k1,1nr | awk '$1 > 1' > dupe_eQtls.txt
 wc -l dupe_eQtls.txt
 31 dupe_eQtls.txt
 
-# Wrote buildInteract script to help build interact-format tracks from CAVIAR files:
-cat << '_EOF_' > buildInteract
+# Wrote buildGtexEqtlBed script to help build bed files from eQTL files:
+cat << '_EOF_' > buildGtexEqtlBed
 #!/usr/bin/env python3
 
 import sys, gzip
 
 qtlFile = sys.argv[1]
 gpFile = sys.argv[2]
 alleleFile = sys.argv[3]
 qtlIdCol = sys.argv[4] # Column name in file header, e.g. eQTL
 probCol = sys.argv[5] # Column name in file header, e.g. Probability
+# DAP-G files have an extra probability column that we want to capture
+if len(sys.argv) > 6:
+    clusterProbCol = sys.argv[6]
+else:
+    clusterProbCol = False
 
 # Open up all of our files
 qfh = gzip.open(qtlFile,"r") # QTL file
 gfh = open(gpFile,"r") # genePred file
 afh = gzip.open(alleleFile,"r") # allele file
 
 # Set up dicts for each
 qtlDict = dict()
 gpDict = dict()
 alleleDict = dict()
 
-# Get indices of eQTL and probability fields
+# Get index of field that we want to replace values in
 header = qfh.readline().decode('ASCII').rstrip().split("\t")
 qtl_col = header.index(qtlIdCol)
 prob_col = header.index(probCol)
+if clusterProbCol:
+    clus_prob_col = header.index(clusterProbCol)
 
 # Process eQTL file
 for line in qfh:
     qtlLine = line.decode('ASCII').strip().split("\t")
     # Skip header line in file
-    if "TISSUE" not in qtlLine:
+    #if "TISSUE" not in qtlLine:
     tissue = qtlLine[0]
     gene = qtlLine[1]
     e_qtl = qtlLine[qtl_col]
     # each of these elements on their own aren't unique, but together they are
     qtlKey = e_qtl + "|" + tissue + "|" + gene
     # Put these into a dict where key is unique name we've made
     qtlDict[qtlKey] = qtlLine
 
 # Process genePred file
 for line in gfh:
     gpLine = line.strip().split("\t")
     gene_id = gpLine[0]
-    # Put into dict with key on ENSG* ID
+    # Put into dict with key on ENSG* ID, e.g.
     gpDict[gene_id] = gpLine
 
 # Process allele file from GTEx
 for line in afh:
     # gzip file, so we need to decode to asii first
     aLine = line.decode('ASCII').strip().split("\t")
 
+    # Key our dict using the allele, which is unique in the file
     allele = aLine[0]
     alleleDict[allele] = aLine
-    #7 is rsID
 
 for entry in qtlDict:
-    # Create list to store elements that will become a single interact line
-    # Interact format: http://genome.ucsc.edu/goldenPath/help/interact.html
-
     # Get gene information from the genePred dict
     # eQTL file/dict has ENSG id in it
     gene_id = qtlDict[entry][1]
     if gene_id in gpDict.keys():
         gene_sym = gpDict[gene_id][11]
         gene_chrom = gpDict[gene_id][1]
         gene_strand = gpDict[gene_id][2]
         gene_start = int(gpDict[gene_id][3])
         gene_end = int(gpDict[gene_id][4])
     # Check if eQTL is in allele/eQTL dictionary so that we can grab the rsID
-    var_pos = qtlDict[entry][2]
-    if var_pos in alleleDict.keys():
-        rsID = alleleDict[var_pos][6]
-    var_start = int(qtlDict[entry][4])
-
-    # Do some things to make sure start isn't ever greater than end for items
-    # Deals with case where eQTL is internal to gene
+    var_name = qtlDict[entry][qtl_col]
+    if var_name in alleleDict.keys():
+        rsID = alleleDict[var_name][6]
+        if rsID == '.':
+            rsID = var_name
+        var_start = int(alleleDict[var_name][2]) - 1
+        var_end = int(alleleDict[var_name][2])
+        chrom = alleleDict[var_name][1]
+
+    # This block of if/else sets up the blockSizes/blockStart/blockCount for
+    # various orientations of eQTLs/genes
+    if chrom == gene_chrom:
+        # Handles case where eQTL is internal to a gene
         if var_start > gene_start and var_start < gene_end:
             chromStart = gene_start
             chromEnd = gene_end
-    # Deals with case where eQTL is downstream
+            blockCount = "1"
+            blockSizes = gene_end - gene_start
+            blockStarts = "0"
+            strand = "."
+        # Handles case where eQTL is downstream of gene
         elif var_start > gene_end:
             chromStart = gene_start
-        chromEnd = var_start
-    # Deals with case where eQTL is upstream
+            chromEnd = var_end
+            bs1 = gene_end - gene_start
+            blockCount = "2"
+            blockSizes = str(bs1) + ",1"
+            blockStarts = "0," + str(var_start - gene_start)
+            strand = "-"
+        # Handles case where eQTL is upstream of gene
         elif var_start < gene_start:
-        chromStart = var_start - 1
+            chromStart = var_start
             chromEnd = gene_end
-
-    interactLine = list()
-    interactLine.append("chr" + qtlDict[entry][3]) # chrom
-    interactLine.append(chromStart) # chrStart
-    interactLine.append(chromEnd) # chrEnd
-    interactLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name
-    interactLine.append(int("1000")) # Maybe I should scale up to 0-1000 range? # score
-    interactLine.append(qtlDict[entry][prob_col]) # value
-    interactLine.append(qtlDict[entry][0]) # exp
-    interactLine.append("0,0,0") #color - eventually replaced by 'addColor' script
-    interactLine.append(interactLine[0]) # sourceChrom
-    interactLine.append(var_start - 1) # sourceStart
-    interactLine.append(var_start) # sourceEnd
-    interactLine.append(rsID) # sourceName
-    interactLine.append(".") # sourceStrand
-    interactLine.append(gene_chrom) # targetChrom
-    interactLine.append(gene_start) # targetStart
-    interactLine.append(gene_end) # targetEnd
-    interactLine.append(gene_sym) # targetEnd
-    interactLine.append(gene_strand) # targetStrand
-
-    # Print interact line to stdout, can redirect to a file to save it
-    print(*interactLine, sep="\t")
+            blockCount = "2"
+            bs2 = gene_end - gene_start
+            blockSizes = "1," + str(bs2)
+            blockStarts = "0," + str(gene_start - var_start)
+            strand = "+"
+        # Handles case where eQTL and start of gene overlap
+        elif var_start == gene_start:
+            chromStart = var_start
+            chromEnd = gene_end
+            blockCount = "1"
+            blockSizes = str(gene_end - var_start)
+            blockStarts = "0"
+            strand = "."
+        # Handles case where eQTL and end of gene overlap
+        elif gene_end == var_start:
+            chromStart = gene_start
+            chromEnd = var_end
+            blockCount = "1"
+            blockSizes = str(var_end - gene_start)
+            blockStarts = "0"
+            strand = "."
+
+        # Add each element of our bed line to a list to print later
+        bedLine = list()
+        bedLine.append(chrom) # chrom
+        bedLine.append(chromStart) # chrStart
+        bedLine.append(chromEnd) # chrEnd
+        bedLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name
+        bedLine.append(int("1000"))# score
+        bedLine.append(strand)# strand
+        bedLine.append(var_start) # thickStart
+        bedLine.append(var_end) # thickEnd
+        bedLine.append("0,0,0") #color - eventually replaced by 'addTissueColors' script
+        bedLine.append(blockCount) # blockCount
+        bedLine.append(blockSizes) # blockSizes
+        bedLine.append(blockStarts) # blockSizes
+        bedLine.append(chrom + ":" + str(var_start+1) + "-" + str(var_end)) # prettified gene pos
+        bedLine.append(rsID) # sourceName
+        bedLine.append(chrom + ":" + str(gene_start+1) + "-" + str(gene_end)) # prettified gene pos
+        bedLine.append(gene_sym) # geneName
+        bedLine.append(gene_id) # geneId
+        bedLine.append(gene_strand) # targetStrand
+        bedLine.append(qtlDict[entry][0]) # tissue
+        bedLine.append(qtlDict[entry][prob_col]) # CAVIAR == Causal Posterior Probability; DAPG == SNP posterior inclusion probability
+        if clusterProbCol:
+            # Signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster)
+            bedLine.append(qtlDict[entry][clus_prob_col])
+
+    # Print bed line to stdout, can redirect to a file to save it
+    print(*bedLine, sep="\t")
 '_EOF_'
 
-# Script takes in eQTL, SNP info, and GENCODE genepred file
-# Uses this information to build an interact line for each item in the eQTL file
 
-# Need to convert GTF to genePredExt
-# (Kate had converted GTF to genePred for GTEx V8 expression track work, but that didn't include gene name as I was hoping)
-gtfToGenePred -genePredExt -geneNameAsName2 -includeVersion gencode.v26.GRCh38.genes.gtf gencode.v26.GRCh38.genes.gpExt 
-
-# Build interact files and sort resulting bed file
-./buildInteract CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz ../gencode.v26.GRCh38.genes.gpExt \
+# Then run buildGtexEqtlBed to build an bed file
+./buildGtexEqtlBed CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz ../gencode.v26.GRCh38.genes.gpExt \
   ../GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz eQTL Probability | \
-    bedSort stdin gtexCaviar.interact.sorted.txt
+  bedSort stdin gtexCaviar.sorted.bed
 
-## Add colors
-# Make list of tissues in V8 file
-zcat GTEx_v8_finemapping_CAVIAR/CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF.txt.gz | cut -f1 -d$'\t' |sort -u |grep -v TISSUE> gtexTissuesV8.txt
+# Create script to add colors to bed file
+cat << '_EOF_' > addTissueColors
 
-# Using GTEx V6p colors, manually match up to names in V8 file
-ln -s /hive/data/outside/GTEx/V6p/eQtl/Caviar2/gtexTissueColor.tab 
-gtexTissueColor.v8.tab 
+#!/usr/bin/env python3
 
-# Write addColors script to add colors from this file to the interact file:
-cat << '_EOF_' > addColors
 ####
-# Intially created interact file w/o colors
-# Wrote this quick script to automatically add them to the interact format
+# Intially created bed file w/o colors
+# This script will replace col 9 with tissue-specific colors
 ####
+
+import sys
+
+bedFile = sys.argv[1]
+colorFile = sys.argv[2]
+
+# Read in color file from //
+cfh = open(colorFile, "r")
+# Process this file and turn it into a dictionary
+colors = dict()
+for line in cfh:
+    splitLine = line.strip().split("\t")
+    # Keys in dictionary are tissue, e.g. Adipose_Subcutaneous
+    colors[splitLine[0]] = splitLine
+
+# Read in bed file
+ifh = open(bedFile, "r")
+for line in ifh:
+    splitLine = line.strip().split("\t")
+    # Extract tisue information from bed file
+    tissue = splitLine[18]
+    # If tissue is in color dict keys, then we're good
+    if tissue in colors.keys():
+        color = colors[tissue][2]
+        # Set color field equal to tissue color
+        splitLine[8] = color
+    # Output modified line to stdout, can save to file by redirecting stdout to a file
+    print(*splitLine, sep="\t")
+
+'_EOF_'
+
+# Then add colors:
+./addTissueColors gtexCaviar.sorted.bed ../gtexTissueColor.v8.tab > gtexCaviar.sorted.colors.bed
+
+# Create custom as file for this bigBed:
+cat << '_EOF_' > dapg.as
+table bed
+"bed12+9 describing interaction between an eQTL and a target gene"
+    (
+    string          chrom;       "Chromosome (or contig, scaffold, etc.). For interchromosomal, use 2 records"
+    uint            chromStart;  "Start position of eQTL"
+    uint            chromEnd;    "End position of gene"
+    string          name;        "Name of item for display in pattern eQTL name/Gene Symbol/Tissue"
+    uint            score;       "Score. Always 1000."
+    char[1]         strand;      "+ or - for strand"
+    uint            thickStart;  "eQTL start"
+    uint            thickEnd;    "eQTL end"
+    uint            reserved;    "Item color, based on tissue colors GTEx Gene track"
+    int             blockCount;  "Number of blocks"
+    int[blockCount] blockSizes;  "Comma separated list of block sizes"
+    int[blockCount] chromStarts; "Start positions of blocks relative to chromStart"
+    string          eqtlPos;     "eQTL position"
+    string          eqtlName;    "eQTL name (most often a dbSNP identifier)"
+    string          genePos;     "Gene position"
+    string          geneName;    "Gene symbol of target gene"
+    string          geneId;      "ENSG ID of target gene"
+    string          geneStrand;  "Strand of target gene"
+    string          tissue;      "Tissue"
+    double          cpp;         "Causal Posterior Probability (CPP) that quantifies the probability that a variant is causal"
+    )
+'_EOF_'
+
+# Build bigBed
+bedToBigBed -as=caviar.as -type=bed12+8 gtexCaviar.sorted.colors.bed /hive/data/genomes/hg38/chrom.sizes gtexCaviar.bb
+
+#############################################################################
+# GTEx V8 cis-eQTLs DAP-G High Confidence (Apr 2022) Matt
+
+cd /hive/data/genomes/hg38/bed/gtex/V8/eQtl/finemap_dap-g
+
+# Download files from
+wget https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_DAPG.tar
+
+# unpack files
+tar xvf GTEx_v8_finemapping_DAPG.tar
+
+# Most files in VCF, but there is which is a TSV, GTEx_v8_finemapping_DAPG.txt.gz
+# Sample header lines
+tissue_id       gene_id cluster_id      cluster_pip     variant_id      variant_pip
+Adipose_Subcutaneous    ENSG00000000457.13      1       1.000   chr1_169891332_G_A_b38  9.881e-01
+Adipose_Subcutaneous    ENSG00000000457.13      1       1.000   chr1_169913898_G_A_b38  1.170e-02
+Adipose_Subcutaneous    ENSG00000000457.13      2       0.994   chr1_169894024_A_C_b38  1.208e-01
+
+# That's a big file:
+zcat GTEx_v8_finemapping_DAPG.txt.gz |wc -l
+21648585
+# How can we filter that down?
+# Looks like they provide a filtered file, GTEx_v8_finemapping_DAPG.CS95.txt.gz,
+# but it's in VCF format. Can we replicate it using their TSV file?
+
+# That VCF is filtered on 'SPIP' only including those clusters with SPIP > 0.95, where
+# SPIP: signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster)
+# SPIP seems equivalent to the 'cluster_pip' in our TSV file
+# So, create a new file where we only include those entries with cluster pip > 0.95
+zcat GTEx_v8_finemapping_DAPG.txt.gz | awk '$4>0.95' | gzip -c > GTEx_v8_finemapping_DAPG.pip_95.txt.gz
+
+# A much smaller file (though still quite a lot of variants!)
+zcat GTEx_v8_finemapping_DAPG.pip_95.txt.gz |wc -l
+7608545
+
+# Wrote buildGtexEqtlBed script to help build bed files from eQTL files:
+cat << '_EOF_' > buildGtexEqtlBed
 #!/usr/bin/env python3
 
+import sys, gzip
+
+qtlFile = sys.argv[1]
+gpFile = sys.argv[2]
+alleleFile = sys.argv[3]
+qtlIdCol = sys.argv[4] # Column name in file header, e.g. eQTL
+probCol = sys.argv[5] # Column name in file header, e.g. Probability
+# DAP-G files have an extra probability column that we want to capture
+if len(sys.argv) > 6:
+    clusterProbCol = sys.argv[6]
+else:
+    clusterProbCol = False
+
+# Open up all of our files
+qfh = gzip.open(qtlFile,"r") # QTL file
+gfh = open(gpFile,"r") # genePred file
+afh = gzip.open(alleleFile,"r") # allele file
+
+# Set up dicts for each
+qtlDict = dict()
+gpDict = dict()
+alleleDict = dict()
+
+# Get index of field that we want to replace values in
+header = qfh.readline().decode('ASCII').rstrip().split("\t")
+qtl_col = header.index(qtlIdCol)
+prob_col = header.index(probCol)
+if clusterProbCol:
+    clus_prob_col = header.index(clusterProbCol)
+
+# Process eQTL file
+for line in qfh:
+    qtlLine = line.decode('ASCII').strip().split("\t")
+    # Skip header line in file
+    #if "TISSUE" not in qtlLine:
+    tissue = qtlLine[0]
+    gene = qtlLine[1]
+    e_qtl = qtlLine[qtl_col]
+    # each of these elements on their own aren't unique, but together they are
+    qtlKey = e_qtl + "|" + tissue + "|" + gene
+    # Put these into a dict where key is unique name we've made
+    qtlDict[qtlKey] = qtlLine
+
+# Process genePred file
+for line in gfh:
+    gpLine = line.strip().split("\t")
+    gene_id = gpLine[0]
+    # Put into dict with key on ENSG* ID
+    gpDict[gene_id] = gpLine
+
+# Process allele file from GTEx
+for line in afh:
+    # gzip file, so we need to decode to asii first
+    aLine = line.decode('ASCII').strip().split("\t")
+
+    # Key our dict using the allele, which is unique in the file
+    allele = aLine[0]
+    alleleDict[allele] = aLine
+
+for entry in qtlDict:
+    # Get gene information from the genePred dict
+    # eQTL file/dict has ENSG id in it
+    gene_id = qtlDict[entry][1]
+    if gene_id in gpDict.keys():
+        gene_sym = gpDict[gene_id][11]
+        gene_chrom = gpDict[gene_id][1]
+        gene_strand = gpDict[gene_id][2]
+        gene_start = int(gpDict[gene_id][3])
+        gene_end = int(gpDict[gene_id][4])
+    # Check if eQTL is in allele/eQTL dictionary so that we can grab the rsID
+    var_name = qtlDict[entry][qtl_col]
+    if var_name in alleleDict.keys():
+        rsID = alleleDict[var_name][6]
+        if rsID == '.':
+            rsID = var_name
+        var_start = int(alleleDict[var_name][2]) - 1
+        var_end = int(alleleDict[var_name][2])
+        chrom = alleleDict[var_name][1]
+
+    # This block of if/else sets up the blockSizes/blockStart/blockCount for
+    # various orientations of eQTLs/genes
+    if chrom == gene_chrom:
+        # Handles case where eQTL is internal to a gene
+        if var_start > gene_start and var_start < gene_end:
+            chromStart = gene_start
+            chromEnd = gene_end
+            blockCount = "1"
+            blockSizes = gene_end - gene_start
+            blockStarts = "0"
+            strand = "."
+        # Handles case where eQTL is downstream of gene
+        elif var_start > gene_end:
+            chromStart = gene_start
+            chromEnd = var_end
+            bs1 = gene_end - gene_start
+            blockCount = "2"
+            blockSizes = str(bs1) + ",1"
+            blockStarts = "0," + str(var_start - gene_start)
+            strand = "-"
+        # Handles case where eQTL is upstream of gene
+        elif var_start < gene_start:
+            chromStart = var_start
+            chromEnd = gene_end
+            blockCount = "2"
+            bs2 = gene_end - gene_start
+            blockSizes = "1," + str(bs2)
+            blockStarts = "0," + str(gene_start - var_start)
+            strand = "+"
+        # Handles case where eQTL and start of gene overlap
+        elif var_start == gene_start:
+            chromStart = var_start
+            chromEnd = gene_end
+            blockCount = "1"
+            blockSizes = str(gene_end - var_start)
+            blockStarts = "0"
+            strand = "."
+        # Handles case where eQTL and end of gene overlap
+        elif gene_end == var_start:
+            chromStart = gene_start
+            chromEnd = var_end
+            blockCount = "1"
+            blockSizes = str(var_end - gene_start)
+            blockStarts = "0"
+            strand = "."
+
+        # Add each element of our bed line to a list to print later
+        bedLine = list()
+        bedLine.append(chrom) # chrom
+        bedLine.append(chromStart) # chrStart
+        bedLine.append(chromEnd) # chrEnd
+        bedLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name
+        bedLine.append(int("1000"))# score
+        bedLine.append(strand)# strand
+        bedLine.append(var_start) # thickStart
+        bedLine.append(var_end) # thickEnd
+        bedLine.append("0,0,0") #color - eventually replaced by 'addTissueColors' script
+        bedLine.append(blockCount) # blockCount
+        bedLine.append(blockSizes) # blockSizes
+        bedLine.append(blockStarts) # blockSizes
+        bedLine.append(chrom + ":" + str(var_start+1) + "-" + str(var_end)) # prettified gene pos
+        bedLine.append(rsID) # sourceName
+        bedLine.append(chrom + ":" + str(gene_start+1) + "-" + str(gene_end)) # prettified gene pos
+        bedLine.append(gene_sym) # geneName
+        bedLine.append(gene_id) # geneId
+        bedLine.append(gene_strand) # targetStrand
+        bedLine.append(qtlDict[entry][0]) # tissue
+        bedLine.append(qtlDict[entry][prob_col]) # CAVIAR == Causal Posterior Probability; DAPG == SNP posterior inclusion probability
+        if clusterProbCol:
+            # Signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster)
+            bedLine.append(qtlDict[entry][clus_prob_col])
+
+    # Print bed line to stdout, can redirect to a file to save it
+    print(*bedLine, sep="\t")
+'_EOF_'
+
+
+# Then run buildGtexEqtlBed to build an bed file
+./buildGtexEqtlBed GTEx_v8_finemapping_DAPG.pip_95.txt.gz ../gencode.v26.GRCh38.genes.gpExt \
+  ../GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz variant_id variant_pip cluster_pip | \
+  bedSort stdin gtexDapg.sorted.bed
+
+# Create script to add colors to bed file
+cat << '_EOF_' > addTissueColors
+
+#!/usr/bin/env python3
+
+####
+# Intially created bed file w/o colors
+# This script will replace col 9 with tissue-specific colors
+####
+
 import sys
 
-interactFile = sys.argv[1]
+bedFile = sys.argv[1]
 colorFile = sys.argv[2]
 
-# Read in color file from gtexTisseColor.v8.tab
+# Read in color file from //
 cfh = open(colorFile, "r")
 # Process this file and turn it into a dictionary
 colors = dict()
 for line in cfh:
     splitLine = line.strip().split("\t")
-    # Keys in dictionary are tissue
+    # Keys in dictionary are tissue, e.g. Adipose_Subcutaneous
     colors[splitLine[0]] = splitLine
 
-# Read in interact file
-ifh = open(interactFile, "r")
+# Read in bed file
+ifh = open(bedFile, "r")
 for line in ifh:
     splitLine = line.strip().split("\t")
-    # Extract tisue information from interact file
-    tissue = splitLine[6]
+    # Extract tisue information from bed file
+    tissue = splitLine[18]
     # If tissue is in color dict keys, then we're good
     if tissue in colors.keys():
         color = colors[tissue][2]
         # Set color field equal to tissue color
-        splitLine[7] = color
+        splitLine[8] = color
     # Output modified line to stdout, can save to file by redirecting stdout to a file
     print(*splitLine, sep="\t")
+
 '_EOF_'
 
-# Run script to add colors
-./addColors gtexCaviar.interact.sorted.txt ../gtexTissueColor.v8.tab > gtexCaviar.interact.sorted.colors.txt
+# Then add colors:
+./addTissueColors gtexDapg.sorted.bed ../gtexTissueColor.v8.tab > gtexDapg.sorted.colors.bed
 
 # Create custom as file for this bigBed:
-cat << '_EOF_' > gtexInteract.as
-table interact
-"Interaction between an eQTL and a target gene"
+cat << '_EOF_' > dapg.as
+table bed
+"bed12+9 describing interaction between an eQTL and a target gene"
     (
     string          chrom;       "Chromosome (or contig, scaffold, etc.). For interchromosomal, use 2 records"
-        uint chromStart;    "Start position of eQTL."
-        uint chromEnd;      "End position of gene."
-        string name;        "Name of item for display, dbSNP rsID/Gene Symbol/Tissue."
-        uint score;         "Not used, always 1000."
-        double cpp;         "Causal Posterior Probability (CPP) that quantifies the probability of each variant to be causal."
+    uint            chromStart;  "Start position of eQTL"
+    uint            chromEnd;    "End position of gene"
+    string          name;        "Name of item for display in pattern eQTL name/Gene Symbol/Tissue"
+    uint            score;       "Score. Always 1000."
+    char[1]         strand;      "+ or - for strand"
+    uint            thickStart;  "eQTL start"
+    uint            thickEnd;    "eQTL end"
+    uint            reserved;    "Item color, based on tissue colors GTEx Gene track"
+    int             blockCount;  "Number of blocks"
+    int[blockCount] blockSizes;  "Comma separated list of block sizes"
+    int[blockCount] chromStarts; "Start positions of blocks relative to chromStart"
+    string          eqtlPos;     "eQTL position"
+    string          eqtlName;    "eQTL name (most often a dbSNP identifier)"
+    string          genePos;     "Gene position"
+    string          geneName;    "Gene symbol of target gene"
+    string          geneId;      "ENSG ID of target gene"
+    string          geneStrand;  "Strand of target gene"
     string          tissue;      "Tissue"
-        string color;       "Item color, based on GTEx Gene expression track colors."
-        string eqtlChrom;   "Chromosome of eQTL."
-        uint eqtlStart;     "Start position of eQTL."
-        uint eqtlEnd;       "End position of eQTL."
-        string eqtlName;    "eQTL name, which is a dbSNP identifier."
-        string eqtlStrand;  "Not applicable, always '.'"
-        string geneChrom;   "Chromosome of target gene."
-        uint geneStart;     "Start position of target gene."
-        uint geneEnd;       "End position of target gene."
-        string geneName;    "Gene symbol of target gene."
-        string geneStrand;  "Strand of target gene."
+    double          pip;         "SNP posterior inclusion probability (higher PIP value indicates the SNP is more likely to be the casual eQTL)"
+    double          clusterPip;  "Signal-level posterior inclusion probability (sum of the PIPs from all members of the signal cluster)"
     )
 '_EOF_'
 
-# Build bigInteract file with colors
-bedToBigBed -as=../gtexInteract.as -type=bed5+13 gtexCaviar.interact.sorted.colors.txt /hive/data/genomes/hg38/chrom.sizes gtexCaviar.interact.colors.bb
+# Build bigBed
+bedToBigBed -as=dapg.as -type=bed12+9 gtexDapg.sorted.colors.bed /hive/data/genomes/hg38/chrom.sizes gtexDapg.bb