c53ffb9020440066c1badd6b2dede9f187a86658 mspeir Thu May 26 16:21:23 2022 -0700 Added GTEx eQTL DAP-G track, changes to GTEx eQTL CAVIAR track. refs #29511 diff --git src/hg/makeDb/doc/hg38/gtex.txt src/hg/makeDb/doc/hg38/gtex.txt index 504f861..9f9dbaf 100644 --- src/hg/makeDb/doc/hg38/gtex.txt +++ src/hg/makeDb/doc/hg38/gtex.txt @@ -1,397 +1,709 @@ ############################################################################# # GTEx V6 (October 2015) Kate # Create BED from hgFixed tables (see doc/gtex) # Reloading during QA of track (fixing gene classes, adding scores). (March 2016) Kate cd /hive/data/outside/gtex/V6 # see doc/hg19.txt for how this genePred was made set chain = /hive/data/genomes/hg19/bed/liftOver/hg19ToHg38.over.chain.gz liftOver -genePred gencodeV19.hg19.genePred $chain gtexGeneModelV6.hg38.genePred \ gencode.V19.hg38.unmapped # 926 unmapped hgLoadGenePred hg38 gtexGeneModelV6 gtexGeneModelV6.hg38.genePred # OLD: creates gtexGeneModelV6.hg38.genePred # OLD: NOTE: drops 192 transcripts. One I spot-checked indeed didn't exist in our hg38 genes cd /hive/data/genomes/hg38/bed mkdir -p gtex cd gtex # table renamed to gtexGeneModel later # Use latest GENCODE attrs file to get biotypes # create bed table ~/kent/src/hg/makeDb/outside/hgGtexGeneBed/hgGtexGeneBed hg38 -gtexVersion=V6 \ -noLoad -gencodeVersion=$gencodeVersion gtexGeneBedV6 -verbose=2 >&! makeGeneBed.log # 45 genes not found in GENCODE attributes table #Max score: 219385.906250 wc -l *.tab wc -l *.tab 52896 gtexGeneBedV6.tab # 55810 gtexGeneBedV6.tab # exploratory for assigning score based on sum of scores (expScores field) set bedScore = ~/kent/src/utils/bedScore/bedScore $bedScore -col=10 -minScore=1 -method=std2 gtexGeneBedV6.tab gtexGeneBedV6.std2.bed $bedScore -col=10 -minScore=1 -method=encode gtexGeneBedV6.tab gtexGeneBedV6.encode.bed $bedScore -col=10 -minScore=1 -method=reg gtexGeneBedV6.tab gtexGeneBedV6.reg.bed $bedScore -col=10 -minScore=1 -method=asinh gtexGeneBedV6.tab gtexGeneBedV6.asinh.bed $bedScore -col=10 -minScore=1 -method=reg -log gtexGeneBedV6.tab gtexGeneBedV6.reg.log.bed $bedScore -log -col=10 -minScore=1 -method=std2 gtexGeneBedV6.tab gtexGeneBedV6.std2.log.bed $bedScore -log -col=10 -minScore=1 -method=encode gtexGeneBedV6.tab gtexGeneBedV6.encode.log.bed $bedScore -log -col=10 -minScore=1 -method=asinh gtexGeneBedV6.tab gtexGeneBedV6.asinh.log.bed # Using -log -method=encode, as this is closest to density plot of all scores # as here: GtexTotalExpressionDensity.png, GtexTotalExpressionFrequency.png textHistogram -real -autoScale=14 -log -col=5 gtexGeneBedV6.encode.log.bed 1.000000 ************************************************************ 22889 72.357214 *************************************************** 4862 143.714428 ************************************************** 4199 215.071643 ************************************************* 3931 286.428857 ************************************************** 4329 357.786071 *************************************************** 5419 429.143285 ************************************************** 4472 500.500500 ********************************************* 1953 571.857714 ************************************** 564 643.214928 ******************************** 200 714.572142 ************************* 61 785.929356 *********** 6 857.286571 ******** 4 928.643785 ************ 7 $bedScore -col=10 -minScore=0 -log -method=encode gtexGeneBedV6.tab gtexGeneBedV6.bed # load up set lib = ~/kent/src/hg/lib hgLoadBed hg38 -noBin -tab -type=bed6+4 \ -as=$lib/gtexGeneBed.as -sqlTable=$lib/gtexGeneBed.sql -renameSqlTable \ gtexGeneBedNewV6 gtexGeneBedV6.bed # Add GTEx to Gene Sorter (2016-08-18 kate) # See hg/near/makeNear.doc ############################################################################# # GTEx V8 (Apr 2020) Kate # Create BED from hgFixed tables (see doc/gtex) # Load gene models (Gencode V26 transcript union from GTEx) cd /hive/data/outside/gtex/V8/rnaSeq gtfToGenePred gencode.v26.GRCh38.genes.gtf gencodeV26.hg38.genePred \ -infoOut=gtexGeneModelInfoV8.tab hgLoadGenePred hg38 gtexGeneModelV8 gencodeV26.hg38.genePred # Get transcript for each gene (why ?) tail -n +2 gtexGeneModelInfoV8.tab | awk '{printf("%s\t%s\n", $1, $9)}' > gtexGeneTranscriptsV8.tab #hgLoadSqlTab hgFixed gtexTranscriptV8 ~/kent/src/hg/lib/gtexTranscript.sql gtexGeneTranscriptsV8.tab # no schema (or table on hgwdev.hgFixed) # Load BED table cd /hive/data/genomes/hg38/bed/gtex mkdir V8 cd V8 set gencode = V26 ~/kent/src/hg/makeDb/outside/hgGtexGeneBed/hgGtexGeneBed \ hg38 -noLoad -gtexVersion=V8 -gencodeVersion=$gencode gtexGeneV8 -verbose=2 >&! log.txt & Reading wgEncodeGencodeAttrs table Reading gtexGeneModelV8 table Reading gtexTissueMedian table Writing tab file gtexGeneV8 Max score: 267400.000000 # Add scores set bedScore = ~/kent/src/utils/bedScore/bedScore $bedScore -col=10 -minScore=0 -log -method=encode gtexGeneV8.tab gtexGeneBedV8.bed textHistogram -real -autoScale=14 -log -col=5 gtexGeneBedV8.bed 0.000000 ************************************************************ 21287 71.428643 **************************************************** 5635 142.857286 **************************************************** 5513 214.285929 *************************************************** 4683 285.714571 *************************************************** 4480 357.143214 *************************************************** 4748 428.571857 **************************************************** 5466 500.000500 ************************************************ 3117 571.429143 ***************************************** 911 642.857786 ********************************* 252 714.286429 ************************** 81 785.715071 ************** 11 857.143714 ******** 4 928.572357 *************** 12 # load up set lib = ~/kent/src/hg/lib hgLoadBed hg38 -noBin -tab -type=bed6+4 \ -as=$lib/gtexGeneBed.as -sqlTable=$lib/gtexGeneBed.sql -renameSqlTable \ gtexGeneV8 gtexGeneBedV8.bed #Read 56200 elements of size 10 from gtexGeneBedV8.bed ### TODO # Add GTEx to Gene Sorter (2016-08-18 kate) # See hg/near/makeNear.doc ############################################################################# -# GTEx V8 cis-eQTLs CAVIAR High Confidence (Sept 2021) Matt +# GTEx V8 cis-eQTLs CAVIAR High Confidence (Apr 2022) Matt cd /hive/data/genomes/hg38/bed/gtex/V8/eQtl/finemap_CAVIAR -# Tar files were downloaded from https://gtexportal.org/home/datasets#filesetFilesDiv15 -# This file was used for this track: +# Download files from wget https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_CAVIAR.tar -# Then unpacked +# unpack files +tar xvf GTEx_v8_finemapping_CAVIAR.tar + # Other files used: # Lookup table for all variants genotyped in GTEx wget https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz # Gene-level model based on the GENCODE 26 transcript model, where isoforms were collapsed to a single transcript per gene. wget https://storage.googleapis.com/gtex_analysis_v8/reference/gencode.v26.GRCh38.genes.gtf # Initially planned to use this file: # CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz # as it seemed to be a filtered subset of eQTLs # Description from GTEx_v8_finemapping_CAVIAR/README.txt # ***CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz --> is a single file for all GTEx tissues and all eGene where we report # all the high causal variants (variants that have posterior probability of > 0.1). # Sample header line: # TISSUE GENE eQTL CHROM POS Probability # Brain_Caudate_basal_ganglia ENSG00000248485.1 1_161274374 1 161274374 0.157456 # However, the names/positions in the eQTL column are not unique meaning # We want file with unique variant/eQTL names that match those in the GTEx # variant mapping file: GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz # Looks like the CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz has names # that match the names in the variant/eQTL mapping file # Description from GTEx_v8_finemapping_CAVIAR/README.txt # ***CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz —> is a single file for all GTEx tissues and all eGenes where we reported # the CPP (Causal Posterior Probability). Each eQTL contains the allele information. Sample header file: - # TISSUE GENE eQTL CHROM POS Probability # Brain_Caudate_basal_ganglia ENSG00000248485.1 chr1_161274374_G_A_b38 1 161274374 0.157456 # So, take NOCUTOFF_with_Allele file and then filter for probability >0.1 (which is how HighConfidentVariants file was created according to GTEx README) zcat CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF_with_Allele.txt.gz | awk '$6 > 0.1' | gzip -c > CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz # Confirm that it has the same size as original HighConfidentVariants file zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants.gz | wc -l 1257158 zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz | wc -l 1257158 # There seem to 31 duplicate eQTLs, meaning that the two lines for these entries are duplicated (probability values, etc.) # These will essentially be collapsed into a single entry by the buildInteract script zcat CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz | sort | uniq -c | sort -k1,1nr | awk '$1 > 1' > dupe_eQtls.txt wc -l dupe_eQtls.txt 31 dupe_eQtls.txt -# Wrote buildInteract script to help build interact-format tracks from CAVIAR files: -cat << '_EOF_' > buildInteract +# Wrote buildGtexEqtlBed script to help build bed files from eQTL files: +cat << '_EOF_' > buildGtexEqtlBed #!/usr/bin/env python3 import sys, gzip qtlFile = sys.argv[1] gpFile = sys.argv[2] alleleFile = sys.argv[3] qtlIdCol = sys.argv[4] # Column name in file header, e.g. eQTL probCol = sys.argv[5] # Column name in file header, e.g. Probability +# DAP-G files have an extra probability column that we want to capture +if len(sys.argv) > 6: + clusterProbCol = sys.argv[6] +else: + clusterProbCol = False # Open up all of our files qfh = gzip.open(qtlFile,"r") # QTL file gfh = open(gpFile,"r") # genePred file afh = gzip.open(alleleFile,"r") # allele file # Set up dicts for each qtlDict = dict() gpDict = dict() alleleDict = dict() -# Get indices of eQTL and probability fields +# Get index of field that we want to replace values in header = qfh.readline().decode('ASCII').rstrip().split("\t") qtl_col = header.index(qtlIdCol) prob_col = header.index(probCol) +if clusterProbCol: + clus_prob_col = header.index(clusterProbCol) # Process eQTL file for line in qfh: qtlLine = line.decode('ASCII').strip().split("\t") # Skip header line in file - if "TISSUE" not in qtlLine: + #if "TISSUE" not in qtlLine: tissue = qtlLine[0] gene = qtlLine[1] e_qtl = qtlLine[qtl_col] # each of these elements on their own aren't unique, but together they are qtlKey = e_qtl + "|" + tissue + "|" + gene # Put these into a dict where key is unique name we've made qtlDict[qtlKey] = qtlLine # Process genePred file for line in gfh: gpLine = line.strip().split("\t") gene_id = gpLine[0] - # Put into dict with key on ENSG* ID + # Put into dict with key on ENSG* ID, e.g. gpDict[gene_id] = gpLine # Process allele file from GTEx for line in afh: # gzip file, so we need to decode to asii first aLine = line.decode('ASCII').strip().split("\t") + # Key our dict using the allele, which is unique in the file allele = aLine[0] alleleDict[allele] = aLine - #7 is rsID for entry in qtlDict: - # Create list to store elements that will become a single interact line - # Interact format: http://genome.ucsc.edu/goldenPath/help/interact.html - # Get gene information from the genePred dict # eQTL file/dict has ENSG id in it gene_id = qtlDict[entry][1] if gene_id in gpDict.keys(): gene_sym = gpDict[gene_id][11] gene_chrom = gpDict[gene_id][1] gene_strand = gpDict[gene_id][2] gene_start = int(gpDict[gene_id][3]) gene_end = int(gpDict[gene_id][4]) # Check if eQTL is in allele/eQTL dictionary so that we can grab the rsID - var_pos = qtlDict[entry][2] - if var_pos in alleleDict.keys(): - rsID = alleleDict[var_pos][6] - var_start = int(qtlDict[entry][4]) - - # Do some things to make sure start isn't ever greater than end for items - # Deals with case where eQTL is internal to gene + var_name = qtlDict[entry][qtl_col] + if var_name in alleleDict.keys(): + rsID = alleleDict[var_name][6] + if rsID == '.': + rsID = var_name + var_start = int(alleleDict[var_name][2]) - 1 + var_end = int(alleleDict[var_name][2]) + chrom = alleleDict[var_name][1] + + # This block of if/else sets up the blockSizes/blockStart/blockCount for + # various orientations of eQTLs/genes + if chrom == gene_chrom: + # Handles case where eQTL is internal to a gene if var_start > gene_start and var_start < gene_end: chromStart = gene_start chromEnd = gene_end - # Deals with case where eQTL is downstream + blockCount = "1" + blockSizes = gene_end - gene_start + blockStarts = "0" + strand = "." + # Handles case where eQTL is downstream of gene elif var_start > gene_end: chromStart = gene_start - chromEnd = var_start - # Deals with case where eQTL is upstream + chromEnd = var_end + bs1 = gene_end - gene_start + blockCount = "2" + blockSizes = str(bs1) + ",1" + blockStarts = "0," + str(var_start - gene_start) + strand = "-" + # Handles case where eQTL is upstream of gene elif var_start < gene_start: - chromStart = var_start - 1 + chromStart = var_start chromEnd = gene_end - - interactLine = list() - interactLine.append("chr" + qtlDict[entry][3]) # chrom - interactLine.append(chromStart) # chrStart - interactLine.append(chromEnd) # chrEnd - interactLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name - interactLine.append(int("1000")) # Maybe I should scale up to 0-1000 range? # score - interactLine.append(qtlDict[entry][prob_col]) # value - interactLine.append(qtlDict[entry][0]) # exp - interactLine.append("0,0,0") #color - eventually replaced by 'addColor' script - interactLine.append(interactLine[0]) # sourceChrom - interactLine.append(var_start - 1) # sourceStart - interactLine.append(var_start) # sourceEnd - interactLine.append(rsID) # sourceName - interactLine.append(".") # sourceStrand - interactLine.append(gene_chrom) # targetChrom - interactLine.append(gene_start) # targetStart - interactLine.append(gene_end) # targetEnd - interactLine.append(gene_sym) # targetEnd - interactLine.append(gene_strand) # targetStrand - - # Print interact line to stdout, can redirect to a file to save it - print(*interactLine, sep="\t") + blockCount = "2" + bs2 = gene_end - gene_start + blockSizes = "1," + str(bs2) + blockStarts = "0," + str(gene_start - var_start) + strand = "+" + # Handles case where eQTL and start of gene overlap + elif var_start == gene_start: + chromStart = var_start + chromEnd = gene_end + blockCount = "1" + blockSizes = str(gene_end - var_start) + blockStarts = "0" + strand = "." + # Handles case where eQTL and end of gene overlap + elif gene_end == var_start: + chromStart = gene_start + chromEnd = var_end + blockCount = "1" + blockSizes = str(var_end - gene_start) + blockStarts = "0" + strand = "." + + # Add each element of our bed line to a list to print later + bedLine = list() + bedLine.append(chrom) # chrom + bedLine.append(chromStart) # chrStart + bedLine.append(chromEnd) # chrEnd + bedLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name + bedLine.append(int("1000"))# score + bedLine.append(strand)# strand + bedLine.append(var_start) # thickStart + bedLine.append(var_end) # thickEnd + bedLine.append("0,0,0") #color - eventually replaced by 'addTissueColors' script + bedLine.append(blockCount) # blockCount + bedLine.append(blockSizes) # blockSizes + bedLine.append(blockStarts) # blockSizes + bedLine.append(chrom + ":" + str(var_start+1) + "-" + str(var_end)) # prettified gene pos + bedLine.append(rsID) # sourceName + bedLine.append(chrom + ":" + str(gene_start+1) + "-" + str(gene_end)) # prettified gene pos + bedLine.append(gene_sym) # geneName + bedLine.append(gene_id) # geneId + bedLine.append(gene_strand) # targetStrand + bedLine.append(qtlDict[entry][0]) # tissue + bedLine.append(qtlDict[entry][prob_col]) # CAVIAR == Causal Posterior Probability; DAPG == SNP posterior inclusion probability + if clusterProbCol: + # Signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster) + bedLine.append(qtlDict[entry][clus_prob_col]) + + # Print bed line to stdout, can redirect to a file to save it + print(*bedLine, sep="\t") '_EOF_' -# Script takes in eQTL, SNP info, and GENCODE genepred file -# Uses this information to build an interact line for each item in the eQTL file -# Need to convert GTF to genePredExt -# (Kate had converted GTF to genePred for GTEx V8 expression track work, but that didn't include gene name as I was hoping) -gtfToGenePred -genePredExt -geneNameAsName2 -includeVersion gencode.v26.GRCh38.genes.gtf gencode.v26.GRCh38.genes.gpExt - -# Build interact files and sort resulting bed file -./buildInteract CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz ../gencode.v26.GRCh38.genes.gpExt \ +# Then run buildGtexEqtlBed to build an bed file +./buildGtexEqtlBed CAVIAR_Results_v8_GTEx_LD_HighConfidentVariants_with_Allele.gz ../gencode.v26.GRCh38.genes.gpExt \ ../GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz eQTL Probability | \ - bedSort stdin gtexCaviar.interact.sorted.txt + bedSort stdin gtexCaviar.sorted.bed -## Add colors -# Make list of tissues in V8 file -zcat GTEx_v8_finemapping_CAVIAR/CAVIAR_Results_v8_GTEx_LD_ALL_NOCUTOFF.txt.gz | cut -f1 -d$'\t' |sort -u |grep -v TISSUE> gtexTissuesV8.txt +# Create script to add colors to bed file +cat << '_EOF_' > addTissueColors -# Using GTEx V6p colors, manually match up to names in V8 file -ln -s /hive/data/outside/GTEx/V6p/eQtl/Caviar2/gtexTissueColor.tab -gtexTissueColor.v8.tab +#!/usr/bin/env python3 -# Write addColors script to add colors from this file to the interact file: -cat << '_EOF_' > addColors #### -# Intially created interact file w/o colors -# Wrote this quick script to automatically add them to the interact format +# Intially created bed file w/o colors +# This script will replace col 9 with tissue-specific colors #### + +import sys + +bedFile = sys.argv[1] +colorFile = sys.argv[2] + +# Read in color file from // +cfh = open(colorFile, "r") +# Process this file and turn it into a dictionary +colors = dict() +for line in cfh: + splitLine = line.strip().split("\t") + # Keys in dictionary are tissue, e.g. Adipose_Subcutaneous + colors[splitLine[0]] = splitLine + +# Read in bed file +ifh = open(bedFile, "r") +for line in ifh: + splitLine = line.strip().split("\t") + # Extract tisue information from bed file + tissue = splitLine[18] + # If tissue is in color dict keys, then we're good + if tissue in colors.keys(): + color = colors[tissue][2] + # Set color field equal to tissue color + splitLine[8] = color + # Output modified line to stdout, can save to file by redirecting stdout to a file + print(*splitLine, sep="\t") + +'_EOF_' + +# Then add colors: +./addTissueColors gtexCaviar.sorted.bed ../gtexTissueColor.v8.tab > gtexCaviar.sorted.colors.bed + +# Create custom as file for this bigBed: +cat << '_EOF_' > dapg.as +table bed +"bed12+9 describing interaction between an eQTL and a target gene" + ( + string chrom; "Chromosome (or contig, scaffold, etc.). For interchromosomal, use 2 records" + uint chromStart; "Start position of eQTL" + uint chromEnd; "End position of gene" + string name; "Name of item for display in pattern eQTL name/Gene Symbol/Tissue" + uint score; "Score. Always 1000." + char[1] strand; "+ or - for strand" + uint thickStart; "eQTL start" + uint thickEnd; "eQTL end" + uint reserved; "Item color, based on tissue colors GTEx Gene track" + int blockCount; "Number of blocks" + int[blockCount] blockSizes; "Comma separated list of block sizes" + int[blockCount] chromStarts; "Start positions of blocks relative to chromStart" + string eqtlPos; "eQTL position" + string eqtlName; "eQTL name (most often a dbSNP identifier)" + string genePos; "Gene position" + string geneName; "Gene symbol of target gene" + string geneId; "ENSG ID of target gene" + string geneStrand; "Strand of target gene" + string tissue; "Tissue" + double cpp; "Causal Posterior Probability (CPP) that quantifies the probability that a variant is causal" + ) +'_EOF_' + +# Build bigBed +bedToBigBed -as=caviar.as -type=bed12+8 gtexCaviar.sorted.colors.bed /hive/data/genomes/hg38/chrom.sizes gtexCaviar.bb + +############################################################################# +# GTEx V8 cis-eQTLs DAP-G High Confidence (Apr 2022) Matt + +cd /hive/data/genomes/hg38/bed/gtex/V8/eQtl/finemap_dap-g + +# Download files from +wget https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_DAPG.tar + +# unpack files +tar xvf GTEx_v8_finemapping_DAPG.tar + +# Most files in VCF, but there is which is a TSV, GTEx_v8_finemapping_DAPG.txt.gz +# Sample header lines +tissue_id gene_id cluster_id cluster_pip variant_id variant_pip +Adipose_Subcutaneous ENSG00000000457.13 1 1.000 chr1_169891332_G_A_b38 9.881e-01 +Adipose_Subcutaneous ENSG00000000457.13 1 1.000 chr1_169913898_G_A_b38 1.170e-02 +Adipose_Subcutaneous ENSG00000000457.13 2 0.994 chr1_169894024_A_C_b38 1.208e-01 + +# That's a big file: +zcat GTEx_v8_finemapping_DAPG.txt.gz |wc -l +21648585 +# How can we filter that down? +# Looks like they provide a filtered file, GTEx_v8_finemapping_DAPG.CS95.txt.gz, +# but it's in VCF format. Can we replicate it using their TSV file? + +# That VCF is filtered on 'SPIP' only including those clusters with SPIP > 0.95, where +# SPIP: signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster) +# SPIP seems equivalent to the 'cluster_pip' in our TSV file +# So, create a new file where we only include those entries with cluster pip > 0.95 +zcat GTEx_v8_finemapping_DAPG.txt.gz | awk '$4>0.95' | gzip -c > GTEx_v8_finemapping_DAPG.pip_95.txt.gz + +# A much smaller file (though still quite a lot of variants!) +zcat GTEx_v8_finemapping_DAPG.pip_95.txt.gz |wc -l +7608545 + +# Wrote buildGtexEqtlBed script to help build bed files from eQTL files: +cat << '_EOF_' > buildGtexEqtlBed #!/usr/bin/env python3 +import sys, gzip + +qtlFile = sys.argv[1] +gpFile = sys.argv[2] +alleleFile = sys.argv[3] +qtlIdCol = sys.argv[4] # Column name in file header, e.g. eQTL +probCol = sys.argv[5] # Column name in file header, e.g. Probability +# DAP-G files have an extra probability column that we want to capture +if len(sys.argv) > 6: + clusterProbCol = sys.argv[6] +else: + clusterProbCol = False + +# Open up all of our files +qfh = gzip.open(qtlFile,"r") # QTL file +gfh = open(gpFile,"r") # genePred file +afh = gzip.open(alleleFile,"r") # allele file + +# Set up dicts for each +qtlDict = dict() +gpDict = dict() +alleleDict = dict() + +# Get index of field that we want to replace values in +header = qfh.readline().decode('ASCII').rstrip().split("\t") +qtl_col = header.index(qtlIdCol) +prob_col = header.index(probCol) +if clusterProbCol: + clus_prob_col = header.index(clusterProbCol) + +# Process eQTL file +for line in qfh: + qtlLine = line.decode('ASCII').strip().split("\t") + # Skip header line in file + #if "TISSUE" not in qtlLine: + tissue = qtlLine[0] + gene = qtlLine[1] + e_qtl = qtlLine[qtl_col] + # each of these elements on their own aren't unique, but together they are + qtlKey = e_qtl + "|" + tissue + "|" + gene + # Put these into a dict where key is unique name we've made + qtlDict[qtlKey] = qtlLine + +# Process genePred file +for line in gfh: + gpLine = line.strip().split("\t") + gene_id = gpLine[0] + # Put into dict with key on ENSG* ID + gpDict[gene_id] = gpLine + +# Process allele file from GTEx +for line in afh: + # gzip file, so we need to decode to asii first + aLine = line.decode('ASCII').strip().split("\t") + + # Key our dict using the allele, which is unique in the file + allele = aLine[0] + alleleDict[allele] = aLine + +for entry in qtlDict: + # Get gene information from the genePred dict + # eQTL file/dict has ENSG id in it + gene_id = qtlDict[entry][1] + if gene_id in gpDict.keys(): + gene_sym = gpDict[gene_id][11] + gene_chrom = gpDict[gene_id][1] + gene_strand = gpDict[gene_id][2] + gene_start = int(gpDict[gene_id][3]) + gene_end = int(gpDict[gene_id][4]) + # Check if eQTL is in allele/eQTL dictionary so that we can grab the rsID + var_name = qtlDict[entry][qtl_col] + if var_name in alleleDict.keys(): + rsID = alleleDict[var_name][6] + if rsID == '.': + rsID = var_name + var_start = int(alleleDict[var_name][2]) - 1 + var_end = int(alleleDict[var_name][2]) + chrom = alleleDict[var_name][1] + + # This block of if/else sets up the blockSizes/blockStart/blockCount for + # various orientations of eQTLs/genes + if chrom == gene_chrom: + # Handles case where eQTL is internal to a gene + if var_start > gene_start and var_start < gene_end: + chromStart = gene_start + chromEnd = gene_end + blockCount = "1" + blockSizes = gene_end - gene_start + blockStarts = "0" + strand = "." + # Handles case where eQTL is downstream of gene + elif var_start > gene_end: + chromStart = gene_start + chromEnd = var_end + bs1 = gene_end - gene_start + blockCount = "2" + blockSizes = str(bs1) + ",1" + blockStarts = "0," + str(var_start - gene_start) + strand = "-" + # Handles case where eQTL is upstream of gene + elif var_start < gene_start: + chromStart = var_start + chromEnd = gene_end + blockCount = "2" + bs2 = gene_end - gene_start + blockSizes = "1," + str(bs2) + blockStarts = "0," + str(gene_start - var_start) + strand = "+" + # Handles case where eQTL and start of gene overlap + elif var_start == gene_start: + chromStart = var_start + chromEnd = gene_end + blockCount = "1" + blockSizes = str(gene_end - var_start) + blockStarts = "0" + strand = "." + # Handles case where eQTL and end of gene overlap + elif gene_end == var_start: + chromStart = gene_start + chromEnd = var_end + blockCount = "1" + blockSizes = str(var_end - gene_start) + blockStarts = "0" + strand = "." + + # Add each element of our bed line to a list to print later + bedLine = list() + bedLine.append(chrom) # chrom + bedLine.append(chromStart) # chrStart + bedLine.append(chromEnd) # chrEnd + bedLine.append(rsID + "/" + gene_sym + "/" + qtlDict[entry][0]) # name + bedLine.append(int("1000"))# score + bedLine.append(strand)# strand + bedLine.append(var_start) # thickStart + bedLine.append(var_end) # thickEnd + bedLine.append("0,0,0") #color - eventually replaced by 'addTissueColors' script + bedLine.append(blockCount) # blockCount + bedLine.append(blockSizes) # blockSizes + bedLine.append(blockStarts) # blockSizes + bedLine.append(chrom + ":" + str(var_start+1) + "-" + str(var_end)) # prettified gene pos + bedLine.append(rsID) # sourceName + bedLine.append(chrom + ":" + str(gene_start+1) + "-" + str(gene_end)) # prettified gene pos + bedLine.append(gene_sym) # geneName + bedLine.append(gene_id) # geneId + bedLine.append(gene_strand) # targetStrand + bedLine.append(qtlDict[entry][0]) # tissue + bedLine.append(qtlDict[entry][prob_col]) # CAVIAR == Causal Posterior Probability; DAPG == SNP posterior inclusion probability + if clusterProbCol: + # Signal-level posterior_inclusion probability (sum of the PIPs from all members of the signal cluster) + bedLine.append(qtlDict[entry][clus_prob_col]) + + # Print bed line to stdout, can redirect to a file to save it + print(*bedLine, sep="\t") +'_EOF_' + + +# Then run buildGtexEqtlBed to build an bed file +./buildGtexEqtlBed GTEx_v8_finemapping_DAPG.pip_95.txt.gz ../gencode.v26.GRCh38.genes.gpExt \ + ../GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz variant_id variant_pip cluster_pip | \ + bedSort stdin gtexDapg.sorted.bed + +# Create script to add colors to bed file +cat << '_EOF_' > addTissueColors + +#!/usr/bin/env python3 + +#### +# Intially created bed file w/o colors +# This script will replace col 9 with tissue-specific colors +#### + import sys -interactFile = sys.argv[1] +bedFile = sys.argv[1] colorFile = sys.argv[2] -# Read in color file from gtexTisseColor.v8.tab +# Read in color file from // cfh = open(colorFile, "r") # Process this file and turn it into a dictionary colors = dict() for line in cfh: splitLine = line.strip().split("\t") - # Keys in dictionary are tissue + # Keys in dictionary are tissue, e.g. Adipose_Subcutaneous colors[splitLine[0]] = splitLine -# Read in interact file -ifh = open(interactFile, "r") +# Read in bed file +ifh = open(bedFile, "r") for line in ifh: splitLine = line.strip().split("\t") - # Extract tisue information from interact file - tissue = splitLine[6] + # Extract tisue information from bed file + tissue = splitLine[18] # If tissue is in color dict keys, then we're good if tissue in colors.keys(): color = colors[tissue][2] # Set color field equal to tissue color - splitLine[7] = color + splitLine[8] = color # Output modified line to stdout, can save to file by redirecting stdout to a file print(*splitLine, sep="\t") + '_EOF_' -# Run script to add colors -./addColors gtexCaviar.interact.sorted.txt ../gtexTissueColor.v8.tab > gtexCaviar.interact.sorted.colors.txt +# Then add colors: +./addTissueColors gtexDapg.sorted.bed ../gtexTissueColor.v8.tab > gtexDapg.sorted.colors.bed # Create custom as file for this bigBed: -cat << '_EOF_' > gtexInteract.as -table interact -"Interaction between an eQTL and a target gene" +cat << '_EOF_' > dapg.as +table bed +"bed12+9 describing interaction between an eQTL and a target gene" ( string chrom; "Chromosome (or contig, scaffold, etc.). For interchromosomal, use 2 records" - uint chromStart; "Start position of eQTL." - uint chromEnd; "End position of gene." - string name; "Name of item for display, dbSNP rsID/Gene Symbol/Tissue." - uint score; "Not used, always 1000." - double cpp; "Causal Posterior Probability (CPP) that quantifies the probability of each variant to be causal." + uint chromStart; "Start position of eQTL" + uint chromEnd; "End position of gene" + string name; "Name of item for display in pattern eQTL name/Gene Symbol/Tissue" + uint score; "Score. Always 1000." + char[1] strand; "+ or - for strand" + uint thickStart; "eQTL start" + uint thickEnd; "eQTL end" + uint reserved; "Item color, based on tissue colors GTEx Gene track" + int blockCount; "Number of blocks" + int[blockCount] blockSizes; "Comma separated list of block sizes" + int[blockCount] chromStarts; "Start positions of blocks relative to chromStart" + string eqtlPos; "eQTL position" + string eqtlName; "eQTL name (most often a dbSNP identifier)" + string genePos; "Gene position" + string geneName; "Gene symbol of target gene" + string geneId; "ENSG ID of target gene" + string geneStrand; "Strand of target gene" string tissue; "Tissue" - string color; "Item color, based on GTEx Gene expression track colors." - string eqtlChrom; "Chromosome of eQTL." - uint eqtlStart; "Start position of eQTL." - uint eqtlEnd; "End position of eQTL." - string eqtlName; "eQTL name, which is a dbSNP identifier." - string eqtlStrand; "Not applicable, always '.'" - string geneChrom; "Chromosome of target gene." - uint geneStart; "Start position of target gene." - uint geneEnd; "End position of target gene." - string geneName; "Gene symbol of target gene." - string geneStrand; "Strand of target gene." + double pip; "SNP posterior inclusion probability (higher PIP value indicates the SNP is more likely to be the casual eQTL)" + double clusterPip; "Signal-level posterior inclusion probability (sum of the PIPs from all members of the signal cluster)" ) '_EOF_' -# Build bigInteract file with colors -bedToBigBed -as=../gtexInteract.as -type=bed5+13 gtexCaviar.interact.sorted.colors.txt /hive/data/genomes/hg38/chrom.sizes gtexCaviar.interact.colors.bb +# Build bigBed +bedToBigBed -as=dapg.as -type=bed12+9 gtexDapg.sorted.colors.bed /hive/data/genomes/hg38/chrom.sizes gtexDapg.bb