fe64746a8641a29b07cb641312297726e6ed4468 hiram Wed Sep 7 15:50:58 2022 -0700 adding description page for TOGA tracks refs #29982 diff --git src/hg/makeDb/trackDb/TOGAannotation.html src/hg/makeDb/trackDb/TOGAannotation.html new file mode 100644 index 0000000..839dafa --- /dev/null +++ src/hg/makeDb/trackDb/TOGAannotation.html @@ -0,0 +1,34 @@ +<h2>Description</h2> +<p> +<b>T</b>ool to infer <b>O</b>rthologs from <b>G</b>enome <b>A</b>lignments +</p> +<p> +<b>TOGA</b> is a new method that integrates gene annotation, inferring orthologs +and classifying genes as intact or lost. +</p> +<p> +<b>TOGA</b> implements a novel machine learning based paradigm to infer +orthologous genes between related species and to accurately distinguish +orthologs from paralogs or processed pseudogenes. +</p> + +<h2>Credits</h2> +<p> +This data was prepared by the <a href='https://tbg.senckenberg.de/hillerlab/' +target=_blank>Michael Hiller Lab</a> +</p> + +<h2>References</h2> +<p> +The <b>TOGA</b> software is available from +<a href='https://github.com/hillerlab/TOGA' +target=_blank>github.com/hillerlab/TOGA</a> +</p> + +<p> +Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales A, +Ahmed AW, Kontopoulos DG, Hilgers L, Zoonomia Consortium, Hiller M. +Integrating gene annotation with orthology inference at scale. +<a href='https://math.mit.edu/seminars/compbiosem/spring22/hiller_michael.pdf' +target=_blank><em>Under Review</em></a> +</p>