871b54b7f7262469495a2db7bc064d3322ff9fa3 angie Wed Oct 12 13:45:51 2022 -0700 Auspice config: added entropy panel and filters for sample type, country, lineage/clade. HT @corneliusroemer diff --git src/hg/hgPhyloPlace/treeToAuspiceJson.c src/hg/hgPhyloPlace/treeToAuspiceJson.c index dcea69f..9aa310d 100644 --- src/hg/hgPhyloPlace/treeToAuspiceJson.c +++ src/hg/hgPhyloPlace/treeToAuspiceJson.c @@ -1,734 +1,750 @@ /* Convert a (sub)tree with condensed nodes to JSON for Nextstrain to display, adding in sample * mutations, protein changes and metadata. */ /* Copyright (C) 2020 The Regents of the University of California */ #include "common.h" #include "errCatch.h" #include "hash.h" #include "hui.h" #include "jsonWrite.h" #include "linefile.h" #include "parsimonyProto.h" #include "phyloPlace.h" #include "phyloTree.h" #include "variantProjector.h" static void auspiceMetaColoringCategoricalStart(struct jsonWrite *jw, char *key, char *title) /* Write key, title and type of a "categorical" coloring spec, but leave it open in case a * scale list needs to be added. */ { jsonWriteObjectStart(jw, NULL); jsonWriteString(jw, "key", key); jsonWriteString(jw, "title", title); jsonWriteString(jw, "type", "categorical"); } static void auspiceMetaColoringCategoricalEnd(struct jsonWrite *jw) /* Close out a coloring spec that was opened with auspiceMetaColoringCategoricalStart. */ { jsonWriteObjectEnd(jw); } static void auspiceMetaColoringCategorical(struct jsonWrite *jw, char *key, char *title) /* Write a "categorical" coloring spec with no scale component. */ { auspiceMetaColoringCategoricalStart(jw, key, title); auspiceMetaColoringCategoricalEnd(jw); } static void jsonWritePair(struct jsonWrite *jw, char *valA, char *valB) /* Write a list with two string values. */ { jsonWriteListStart(jw, NULL); jsonWriteString(jw, NULL, valA); jsonWriteString(jw, NULL, valB); jsonWriteListEnd(jw); } static void auspiceMetaColoringSarsCov2Nextclade(struct jsonWrite *jw, char *key, char *title) /* Write a coloring spec for SARS-CoV-2 Nextstrain clades. (Non-VoC clades are omitted and * will be assigned grayscale values by Auspice. */ { auspiceMetaColoringCategoricalStart(jw, key, title); jsonWriteListStart(jw, "scale"); // Color hex values are words from line N of // https://github.com/nextstrain/ncov/blob/master/defaults/color_schemes.tsv // where N = number of clade_membership lines in // https://github.com/nextstrain/ncov/blob/master/defaults/color_ordering.tsv jsonWritePair(jw, "20H (Beta, V2)", "#5E1D9D"); jsonWritePair(jw, "20I (Alpha, V1)", "#492AB5"); jsonWritePair(jw, "20J (Gamma, V3)", "#4042C7"); jsonWritePair(jw, "21A (Delta)", "#3E5DD0"); jsonWritePair(jw, "21I (Delta)", "#4377CD"); jsonWritePair(jw, "21J (Delta)", "#4A8CC2"); jsonWritePair(jw, "21B (Kappa)", "#549DB2"); jsonWritePair(jw, "21C (Epsilon)", "#60AA9E"); jsonWritePair(jw, "21D (Eta)", "#6EB389"); jsonWritePair(jw, "21E (Theta)", "#80B974"); jsonWritePair(jw, "21F (Iota)", "#92BC63"); jsonWritePair(jw, "21G (Lambda)", "#A6BE55"); jsonWritePair(jw, "21H (Mu)", "#B9BC4A"); jsonWritePair(jw, "21K (Omicron)", "#CBB742"); jsonWritePair(jw, "21L (Omicron)", "#D9AD3D"); jsonWritePair(jw, "21M (Omicron)", "#E29D39"); jsonWritePair(jw, "22A (Omicron)", "#E68634"); jsonWritePair(jw, "22B (Omicron)", "#E56A2F"); jsonWritePair(jw, "22C (Omicron)", "#E04929"); jsonWritePair(jw, "22D (Omicron)", "#DB2823"); jsonWritePair(jw, "uploaded sample", "#000000"); jsonWriteListEnd(jw); auspiceMetaColoringCategoricalEnd(jw); } static void writeAuspiceMetaGenomeAnnotations(struct jsonWrite *jw, struct geneInfo *geneInfoList, uint genomeSize) /* Write out auspice genome annotations (protein-coding gene CDS and "nuc"). */ { jsonWriteObjectStart(jw, "genome_annotations"); struct geneInfo *gi; for (gi = geneInfoList; gi != NULL; gi = gi->next) { jsonWriteObjectStart(jw, gi->psl->qName); jsonWriteNumber(jw, "start", gi->psl->tStart+1); jsonWriteNumber(jw, "end", gi->psl->tEnd); jsonWriteString(jw, "strand", (pslOrientation(gi->psl) > 0) ? "+" : "-"); jsonWriteString(jw, "type", "CDS"); jsonWriteObjectEnd(jw); } jsonWriteObjectStart(jw, "nuc"); jsonWriteNumber(jw, "start", 1); jsonWriteNumber(jw, "end", genomeSize); jsonWriteString(jw, "strand", "+"); jsonWriteString(jw, "type", "source"); jsonWriteObjectEnd(jw); jsonWriteObjectEnd(jw); } static char *getDefaultColor(struct slName *colorFields) /* Pick default color from available color fields from metadata. Do not free returned string. */ { char *colorDefault = NULL; if (slNameInList(colorFields, "Nextstrain_lineage")) colorDefault = "Nextstrain_lineage"; else if (slNameInList(colorFields, "Nextstrain_clade")) colorDefault = "Nextstrain_clade"; else if (colorFields != NULL) colorDefault = colorFields->name; else colorDefault = "userOrOld"; return colorDefault; } static void auspiceMetaColorings(struct jsonWrite *jw, char *source, struct slName *colorFields) /* Write coloring specs for colorFields from metadata, locally added userOrOld, and * Auspice-automatic gt. */ { jsonWriteListStart(jw, "colorings"); auspiceMetaColoringCategoricalStart(jw, "userOrOld", "Sample type"); jsonWriteListStart(jw, "scale"); jsonWritePair(jw, "uploaded sample", "#CC0000"); jsonWritePair(jw, source, "#000000"); jsonWriteListEnd(jw); auspiceMetaColoringCategoricalEnd(jw); auspiceMetaColoringCategorical(jw, "gt", "Genotype"); struct slName *col; for (col = colorFields; col != NULL; col = col->next) { if (sameString(col->name, "Nextstrain_clade")) auspiceMetaColoringSarsCov2Nextclade(jw, col->name, "Nextstrain Clade"); else if (sameString(col->name, "Nextstrain_clade_usher")) auspiceMetaColoringSarsCov2Nextclade(jw, col->name, "Nextstrain Clade assigned by UShER"); else if (sameString(col->name, "pango_lineage")) auspiceMetaColoringCategorical(jw, col->name, "Pango lineage"); else if (sameString(col->name, "pango_lineage_usher")) auspiceMetaColoringCategorical(jw, col->name, "Pango lineage assigned by UShER"); else if (sameString(col->name, "Nextstrain_lineage")) auspiceMetaColoringCategorical(jw, col->name, "Nextstrain lineage"); else if (sameString(col->name, "country")) auspiceMetaColoringCategorical(jw, col->name, "Country"); else auspiceMetaColoringCategorical(jw, col->name, col->name); } jsonWriteListEnd(jw); } static void writeAuspiceMeta(struct jsonWrite *jw, struct slName *subtreeUserSampleIds, char *source, - struct slName *colorFields, struct geneInfo *geneInfoList, + char *db, struct slName *colorFields, struct geneInfo *geneInfoList, uint genomeSize) /* Write metadata to configure Auspice display. */ { jsonWriteObjectStart(jw, "meta"); // Title struct dyString *dy = dyStringCreate("Subtree with %s", subtreeUserSampleIds->name); int sampleCount = slCount(subtreeUserSampleIds); if (sampleCount > 10) dyStringPrintf(dy, " and %d other uploaded samples", sampleCount - 1); else { struct slName *sln; for (sln = subtreeUserSampleIds->next; sln != NULL; sln = sln->next) dyStringPrintf(dy, ", %s", sln->name); } jsonWriteString(jw, "title", dy->string); // Description jsonWriteStringf(jw, "description", "Dataset generated by [UShER web interface]" "(%shgPhyloPlace) using the " "[usher](https://github.com/yatisht/usher/) program. " //#*** TODO: describe input from which tree was generated: user sample, version of tree, etc. "If you have metadata you wish to display, you can now drag on a CSV file and " "it will be added into this view, [see here]("NEXTSTRAIN_DRAG_DROP_DOC") " "for more info." , hLocalHostCgiBinUrl()); -// Panels: just the tree (no map, entropy etc.) +// Panels: just the tree and entropy (no map) jsonWriteListStart(jw, "panels"); jsonWriteString(jw, NULL, "tree"); +jsonWriteString(jw, NULL, "entropy"); jsonWriteListEnd(jw); // Default label & color jsonWriteObjectStart(jw, "display_defaults"); -jsonWriteString(jw, "branch_label", "none"); +jsonWriteString(jw, "branch_label", "aa mutations"); jsonWriteString(jw, "color_by", getDefaultColor(colorFields)); jsonWriteObjectEnd(jw); // Colorings: userOrOld, gt and whatever we got from metadata auspiceMetaColorings(jw, source, colorFields); // Filters didn't work when I tried them a long time ago... revisit someday. jsonWriteListStart(jw, "filters"); +jsonWriteString(jw, NULL, "userOrOld"); +jsonWriteString(jw, NULL, "country"); +//#*** FIXME: TODO: either pass in along with sampleMetadata, or better yet, compute while building +//#*** tree object and then write the header object. +if (sameString(db, "wuhCor1")) + { + jsonWriteString(jw, NULL, "pango_lineage_usher"); + jsonWriteString(jw, NULL, "pango_lineage"); + jsonWriteString(jw, NULL, "Nextstrain_clade_usher"); + jsonWriteString(jw, NULL, "Nextstrain_clade"); + } +else + { + jsonWriteString(jw, NULL, "Nextstrain_lineage"); + } jsonWriteListEnd(jw); // Annotations for coloring/filtering by base writeAuspiceMetaGenomeAnnotations(jw, geneInfoList, genomeSize); jsonWriteObjectEnd(jw); } static void jsonWriteObjectValueUrl(struct jsonWrite *jw, char *name, char *value, char *url) /* Write an object with member "value" set to value, and if url is non-empty, "url" set to url. */ { jsonWriteObjectStart(jw, name); jsonWriteString(jw, "value", value); if (isNotEmpty(url)) jsonWriteString(jw, "url", url); jsonWriteObjectEnd(jw); } static void jsonWriteObjectValue(struct jsonWrite *jw, char *name, char *value) /* Write an object with one member, "value", set to value, as most Auspice node attributes are * formatted. */ { jsonWriteObjectValueUrl(jw, name, value, NULL); } static void makeLineageUrl(char *lineage, char *lineageUrl, size_t lineageUrlSize) /* If lineage is not "uploaded sample", make an outbreak.info link to it, otherwise just copy * lineage. */ { if (sameString(lineage, "uploaded sample")) safecpy(lineageUrl, lineageUrlSize, lineage); else safef(lineageUrl, lineageUrlSize, OUTBREAK_INFO_URLBASE "%s", lineage); } static void jsonWriteLeafNodeAttributes(struct jsonWrite *jw, char *name, struct sampleMetadata *met, boolean isUserSample, char *source, struct hash *sampleUrls, char **retUserOrOld, char **retNClade, char **retGClade, char **retLineage, char **retNLineage, char **retNCladeUsher, char **retLineageUsher) /* Write elements of node_attrs for a sample which may be preexisting and in our metadata hash, * or may be a new sample from the user. Set rets for color categories so parent branches can * determine their color categories. */ { *retUserOrOld = isUserSample ? "uploaded sample" : source; jsonWriteObjectValue(jw, "userOrOld", *retUserOrOld); if (met && met->date) jsonWriteObjectValue(jw, "date", met->date); if (met && met->author) { jsonWriteObjectValue(jw, "author", met->author); // Note: Nextstrain adds paper_url and title when available; they also add author and use // a uniquified value (e.g. "author": "Wenjie Tan et al" / "value": "Wenjie Tan et al A") } *retNClade = isUserSample ? "uploaded sample" : (met && met->nClade) ? met->nClade : NULL; if (isNotEmpty(*retNClade)) jsonWriteObjectValue(jw, "Nextstrain_clade", *retNClade); *retGClade = isUserSample ? "uploaded sample" : (met && met->gClade) ? met->gClade : NULL; if (isNotEmpty(*retGClade)) jsonWriteObjectValue(jw, "GISAID_clade", *retGClade); *retLineage = isUserSample ? "uploaded sample" : (met && met->lineage) ? met->lineage : NULL; if (isNotEmpty(*retLineage)) { char lineageUrl[1024]; makeLineageUrl(*retLineage, lineageUrl, sizeof lineageUrl); jsonWriteObjectValueUrl(jw, "pango_lineage", *retLineage, lineageUrl); } *retNLineage = isUserSample ? "uploaded sample" : (met && met->nLineage) ? met->nLineage : NULL; if (isNotEmpty(*retNLineage)) { jsonWriteObjectValue(jw, "Nextstrain_lineage", *retNLineage); } if (met && met->epiId) jsonWriteObjectValue(jw, "gisaid_epi_isl", met->epiId); if (met && met->gbAcc) jsonWriteObjectValue(jw, "genbank_accession", met->gbAcc); if (met && met->country) jsonWriteObjectValue(jw, "country", met->country); if (met && met->division) jsonWriteObjectValue(jw, "division", met->division); if (met && met->location) jsonWriteObjectValue(jw, "location", met->location); if (met && met->countryExp) jsonWriteObjectValue(jw, "country_exposure", met->countryExp); if (met && met->divExp) jsonWriteObjectValue(jw, "division_exposure", met->divExp); if (met && met->origLab) jsonWriteObjectValue(jw, "originating_lab", met->origLab); if (met && met->subLab) jsonWriteObjectValue(jw, "submitting_lab", met->subLab); if (met && met->region) jsonWriteObjectValue(jw, "region", met->region); *retNCladeUsher = isUserSample ? "uploaded sample" : (met && met->nCladeUsher) ? met->nCladeUsher : NULL; if (isNotEmpty(*retNCladeUsher)) jsonWriteObjectValue(jw, "Nextstrain_clade_usher", *retNCladeUsher); *retLineageUsher = isUserSample ? "uploaded sample" : (met && met->lineageUsher) ? met->lineageUsher : NULL; if (isNotEmpty(*retLineageUsher)) { char lineageUrl[1024]; makeLineageUrl(*retLineageUsher, lineageUrl, sizeof lineageUrl); jsonWriteObjectValueUrl(jw, "pango_lineage_usher", *retLineageUsher, lineageUrl); } char *sampleUrl = (sampleUrls && name) ? hashFindVal(sampleUrls, name) : NULL; if (isNotEmpty(sampleUrl)) { char *p = strstr(sampleUrl, "subtreeAuspice"); char *subtreeNum = p + strlen("subtreeAuspice"); if (p && isdigit(*subtreeNum)) { int num = atoi(subtreeNum); char subtreeLabel[1024]; safef(subtreeLabel, sizeof subtreeLabel, "view subtree %d", num); jsonWriteObjectValueUrl(jw, "subtree", subtreeLabel, sampleUrl); } else jsonWriteObjectValueUrl(jw, "subtree", sampleUrl, sampleUrl); } } static void jsonWriteBranchNodeAttributes(struct jsonWrite *jw, char *userOrOld, char *nClade, char *gClade, char *lineage, char *nLineage, char *nCladeUsher, char *lineageUsher) /* Write elements of node_attrs for a branch. */ { if (userOrOld) jsonWriteObjectValue(jw, "userOrOld", userOrOld); if (nClade) jsonWriteObjectValue(jw, "Nextstrain_clade", nClade); if (gClade) jsonWriteObjectValue(jw, "GISAID_clade", gClade); if (lineage) jsonWriteObjectValue(jw, "pango_lineage", lineage); if (nLineage) jsonWriteObjectValue(jw, "Nextstrain_lineage", lineage); if (nCladeUsher) jsonWriteObjectValue(jw, "Nextstrain_clade_usher", nCladeUsher); if (lineageUsher) jsonWriteObjectValue(jw, "pango_lineage_usher", lineageUsher); } static boolean changesProtein(struct singleNucChange *snc, struct geneInfo *gi, struct seqWindow *gSeqWin, int *retAaStart, char *retOldAa, char *retNewAa) /* If snc changes the coding sequence of gene, return TRUE and set ret values accordingly * (note amino acid values are single-base not strings). */ { boolean isCodingChange = FALSE; if (snc->chromStart < gi->psl->tEnd && snc->chromStart >= gi->psl->tStart) { struct bed3 gBed3 = { NULL, gSeqWin->seqName, snc->chromStart, snc->chromStart+1 }; char gAlt[2]; safef(gAlt, sizeof(gAlt), "%c", snc->newBase); struct vpTx *vpTx = vpGenomicToTranscript(gSeqWin, &gBed3, gAlt, gi->psl, gi->txSeq); if (vpTx->start.region == vpExon) { int aaStart = vpTx->start.txOffset / 3; int codonStart = aaStart * 3; char newCodon[4]; safencpy(newCodon, sizeof newCodon, gi->txSeq->dna + codonStart, 3); int codonOffset = vpTx->start.txOffset - codonStart; assert(codonOffset < sizeof newCodon); char newNt = (pslOrientation(gi->psl) > 0) ? snc->newBase : ntCompTable[(int)snc->newBase]; newCodon[codonOffset] = newNt; char newAa = lookupCodon(newCodon); char oldAa; if (snc->parBase == snc->refBase) oldAa = lookupCodon(gi->txSeq->dna + codonStart); else { char oldCodon[4]; safencpy(oldCodon, sizeof oldCodon, gi->txSeq->dna + codonStart, 3); char oldNt = (pslOrientation(gi->psl) > 0) ? snc->parBase : ntCompTable[(int)snc->parBase]; oldCodon[codonOffset] = oldNt; oldAa = lookupCodon(oldCodon); } // Watch out for lookupCodon's null-character return value for stop codon; we want '*'. if (newAa == '\0') newAa = '*'; if (oldAa == '\0') oldAa = '*'; if (newAa != oldAa) { isCodingChange = TRUE; *retAaStart = aaStart; *retOldAa = oldAa; *retNewAa = newAa; } } vpTxFree(&vpTx); } return isCodingChange; } struct slPair *getAaMutations(struct singleNucChange *sncList, struct geneInfo *geneInfoList, struct seqWindow *gSeqWin) /* Given lists of SNVs and genes, return a list of pairs of { gene name, AA change list }. */ { struct slPair *geneChangeList = NULL; struct geneInfo *gi; for (gi = geneInfoList; gi != NULL; gi = gi->next) { struct slName *aaChangeList = NULL; struct singleNucChange *snc; for (snc = sncList; snc != NULL; snc = snc->next) { if (snc->chromStart < gi->psl->tEnd && snc->chromStart >= gi->psl->tStart) { int aaStart; char oldAa, newAa; if (changesProtein(snc, gi, gSeqWin, &aaStart, &oldAa, &newAa)) { char aaChange[32]; safef(aaChange, sizeof aaChange, "%c%d%c", oldAa, aaStart+1, newAa); slNameAddHead(&aaChangeList, aaChange); } } } if (aaChangeList != NULL) { slReverse(&aaChangeList); slAddHead(&geneChangeList, slPairNew(gi->psl->qName, aaChangeList)); } } slReverse(&geneChangeList); return geneChangeList; } static void jsonWriteBranchAttrs(struct jsonWrite *jw, struct phyloTree *node, struct geneInfo *geneInfoList, struct seqWindow *gSeqWin) /* Write mutations (if any). If node is not a leaf, write label for mutations at this node. */ { if (node->priv != NULL) { struct singleNucChange *sncList = node->priv; struct slPair *geneAaMutations = getAaMutations(sncList, geneInfoList, gSeqWin); jsonWriteObjectStart(jw, "branch_attrs"); if (node->numEdges > 0) { jsonWriteObjectStart(jw, "labels"); struct singleNucChange *snc = sncList; struct dyString *dy = dyStringCreate("%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase); for (snc = sncList->next; snc != NULL; snc = snc->next) dyStringPrintf(dy, ",%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase); jsonWriteString(jw, "nuc mutations", dy->string); dyStringClear(dy); for (snc = sncList; snc != NULL; snc = snc->next) { char ref[2]; seqWindowCopy(gSeqWin, snc->chromStart, 1, ref, sizeof(ref)); if (snc->newBase == ref[0]) { dyStringAppendSep(dy, ","); dyStringPrintf(dy, "%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase); } } jsonWriteString(jw, "back-mutations", dy->string); dyStringClear(dy); struct dyString *dyS = dyStringNew(0); struct slPair *geneAaMut; for (geneAaMut = geneAaMutations; geneAaMut != NULL; geneAaMut = geneAaMut->next) { struct slName *aaMut; for (aaMut = geneAaMut->val; aaMut != NULL; aaMut = aaMut->next) { dyStringAppendSep(dy, ","); dyStringPrintf(dy, "%s:%s", geneAaMut->name, aaMut->name); } if (sameString("S", geneAaMut->name)) { for (aaMut = geneAaMut->val; aaMut != NULL; aaMut = aaMut->next) { dyStringAppendSep(dyS, ","); dyStringPrintf(dyS, "%s:%s", geneAaMut->name, aaMut->name); } } } if (isNotEmpty(dy->string)) jsonWriteString(jw, "aa mutations", dy->string); if (isNotEmpty(dyS->string)) jsonWriteString(jw, "Spike mutations", dyS->string); dyStringFree(&dy); dyStringFree(&dyS); jsonWriteObjectEnd(jw); } jsonWriteObjectStart(jw, "mutations"); struct slPair *geneAaMut; for (geneAaMut = geneAaMutations; geneAaMut != NULL; geneAaMut = geneAaMut->next) { jsonWriteListStart(jw, geneAaMut->name); struct slName *aaMut; for (aaMut = geneAaMut->val; aaMut != NULL; aaMut = aaMut->next) jsonWriteString(jw, NULL, aaMut->name); jsonWriteListEnd(jw); } jsonWriteListStart(jw, "nuc"); struct singleNucChange *snc; for (snc = sncList; snc != NULL; snc = snc->next) jsonWriteStringf(jw, NULL, "%c%d%c", snc->parBase, snc->chromStart+1, snc->newBase); jsonWriteListEnd(jw); jsonWriteObjectEnd(jw); // mutations jsonWriteObjectEnd(jw); // branch_attrs } } struct auspiceJsonInfo /* Collection of a bunch of things used when writing out auspice JSON for a subtree, so the * recursive function doesn't need a dozen args. */ { struct jsonWrite *jw; struct slName *subtreeUserSampleIds; // Subtree node names for user samples (not from big tree) struct geneInfo *geneInfoList; // Transcript seq & alignment for predicting AA change struct seqWindow *gSeqWin; // Reference genome seq for predicting AA change struct hash *sampleMetadata; // Sample metadata for decorating tree struct hash *sampleUrls; // URLs for samples, if applicable int nodeNum; // For generating sequential node ID (in absence of name) char *source; // Source of non-user sequences in tree (GISAID or public) }; static int cmpstringp(const void *p1, const void *p2) /* strcmp on pointers to strings, as in 'man qsort' but tolerate NULLs */ { char *s1 = *(char * const *)p1; char *s2 = *(char * const *)p2; if (s1 && s2) return strcmp(s1, s2); else if (s1 && !s2) return 1; else if (s2 && !s1) return -1; return 0; } static char *majorityMaybe(char *array[], int arraySize) /* Sort array and if a majority of its values are the same then return that value; otherwise NULL. */ { if (arraySize < 1) return NULL; qsort(array, arraySize, sizeof array[0], cmpstringp); char *maxRunVal = array[0]; int runLength = 1, maxRunLength = 1; int i; for (i = 1; i < arraySize; i++) { if (sameOk(array[i], array[i-1])) { runLength++; if (runLength > maxRunLength) { maxRunLength = runLength; maxRunVal = array[i]; } } else runLength = 1; } return (maxRunLength > (arraySize >> 1)) ? maxRunVal : NULL; } static void rTreeToAuspiceJson(struct phyloTree *node, int depth, struct auspiceJsonInfo *aji, char **retUserOrOld, char **retNClade, char **retGClade, char **retLineage, char **retNLineage, char **retNCladeUsher, char **retLineageUsher) /* Write Augur/Auspice V2 JSON for tree. Enclosing object start and end are written by caller. */ { if (node->priv) { struct singleNucChange *sncList = node->priv; depth += slCount(sncList); } boolean isUserSample = FALSE; if (node->ident->name) isUserSample = slNameInList(aji->subtreeUserSampleIds, node->ident->name); char *name = node->ident->name; struct sampleMetadata *met = name ? metadataForSample(aji->sampleMetadata, name) : NULL; if (name) jsonWriteString(aji->jw, "name", name); else jsonWriteStringf(aji->jw, "name", "NODE%d", aji->nodeNum++); jsonWriteBranchAttrs(aji->jw, node, aji->geneInfoList, aji->gSeqWin); if (node->numEdges > 0) { jsonWriteListStart(aji->jw, "children"); char *kidUserOrOld[node->numEdges]; char *kidNClade[node->numEdges]; char *kidGClade[node->numEdges]; char *kidLineage[node->numEdges]; char *kidNCladeUsher[node->numEdges]; char *kidLineageUsher[node->numEdges]; char *kidNLineage[node->numEdges]; // Step through children in reverse order because nextstrain/Auspice draws upside-down. :) int i; for (i = node->numEdges - 1; i >= 0; i--) { jsonWriteObjectStart(aji->jw, NULL); rTreeToAuspiceJson(node->edges[i], depth, aji, &kidUserOrOld[i], &kidNClade[i], &kidGClade[i], &kidLineage[i], &kidNLineage[i], &kidNCladeUsher[i], &kidLineageUsher[i]); jsonWriteObjectEnd(aji->jw); } jsonWriteListEnd(aji->jw); if (retUserOrOld) *retUserOrOld = majorityMaybe(kidUserOrOld, node->numEdges); if (retNClade) *retNClade = majorityMaybe(kidNClade, node->numEdges); if (retGClade) *retGClade = majorityMaybe(kidGClade, node->numEdges); if (retLineage) *retLineage = majorityMaybe(kidLineage, node->numEdges); if (retNCladeUsher) *retNCladeUsher = majorityMaybe(kidNCladeUsher, node->numEdges); if (retLineageUsher) *retLineageUsher = majorityMaybe(kidLineageUsher, node->numEdges); if (retNLineage) *retNLineage = majorityMaybe(kidNLineage, node->numEdges); } jsonWriteObjectStart(aji->jw, "node_attrs"); jsonWriteDouble(aji->jw, "div", depth); if (node->numEdges == 0) jsonWriteLeafNodeAttributes(aji->jw, name, met, isUserSample, aji->source, aji->sampleUrls, retUserOrOld, retNClade, retGClade, retLineage, retNLineage, retNCladeUsher, retLineageUsher); else if (retUserOrOld && retGClade && retLineage) jsonWriteBranchNodeAttributes(aji->jw, *retUserOrOld, *retNClade, *retGClade, *retLineage, *retNLineage, *retNCladeUsher, *retLineageUsher); jsonWriteObjectEnd(aji->jw); } struct phyloTree *phyloTreeNewNode(char *name) /* Alloc & return a new node with no children. */ { struct phyloTree *node; AllocVar(node); AllocVar(node->ident); node->ident->name = cloneString(name); return node; } struct geneInfo *getGeneInfoList(char *bigGenePredFile, struct dnaSeq *refGenome) /* If config.ra has a source of gene annotations, then return the gene list. */ { struct geneInfo *geneInfoList = NULL; struct bbiFile *bbi = NULL; struct errCatch *errCatch = errCatchNew(); if (isNotEmpty(bigGenePredFile)) { if (errCatchStart(errCatch)) { bbi = bigBedFileOpen(bigGenePredFile); } errCatchEnd(errCatch); } if (bbi) { struct lm *lm = lmInit(0); struct bigBedInterval *bb, *bbList = bigBedIntervalQuery(bbi, refGenome->name, 0, refGenome->size, 0, lm); for (bb = bbList; bb != NULL; bb = bb->next) { struct genePredExt *gp = genePredFromBigGenePred(refGenome->name, bb); int txLen = 0; int ex; for (ex = 0; ex < gp->exonCount; ex++) txLen += (gp->exonEnds[ex] - gp->exonStarts[ex]); char *seq = needMem(txLen+1); int txOffset = 0; for (ex = 0; ex < gp->exonCount; ex++) { int exonLen = gp->exonEnds[ex] - gp->exonStarts[ex]; safencpy(seq+txOffset, txLen+1-txOffset, refGenome->dna+gp->exonStarts[ex], exonLen); txOffset += exonLen; } if (sameString(gp->strand, "-")) reverseComplement(seq, txLen); struct geneInfo *gi; AllocVar(gi); gi->psl = genePredToPsl((struct genePred *)gp, refGenome->size, txLen); gi->psl->qName = cloneString(gp->name2); gi->txSeq = newDnaSeq(seq, txLen, gp->name2); slAddHead(&geneInfoList, gi); } lmCleanup(&lm); bigBedFileClose(&bbi); } slReverse(&geneInfoList); return geneInfoList; } void treeToAuspiceJson(struct subtreeInfo *sti, char *db, struct geneInfo *geneInfoList, struct seqWindow *gSeqWin, struct hash *sampleMetadata, struct hash *sampleUrls, char *jsonFile, char *source) /* Write JSON for tree in Nextstrain's Augur/Auspice V2 JSON format * (https://github.com/nextstrain/augur/blob/master/augur/data/schema-export-v2.json). */ { struct phyloTree *tree = sti->subtree; FILE *outF = mustOpen(jsonFile, "w"); struct jsonWrite *jw = jsonWriteNew(); jsonWriteObjectStart(jw, NULL); jsonWriteString(jw, "version", "v2"); //#*** FIXME: TODO: either pass in along with sampleMetadata, or better yet, compute while building //#*** tree object and then write the header object. struct slName *colorFields = NULL; if (sameString(db, "wuhCor1")) { slNameAddHead(&colorFields, "country"); slNameAddHead(&colorFields, "Nextstrain_clade_usher"); slNameAddHead(&colorFields, "pango_lineage_usher"); slNameAddHead(&colorFields, "Nextstrain_clade"); slNameAddHead(&colorFields, "pango_lineage"); } else { slNameAddHead(&colorFields, "country"); slNameAddHead(&colorFields, "Nextstrain_lineage"); } //#*** END FIXME -writeAuspiceMeta(jw, sti->subtreeUserSampleIds, source, colorFields, geneInfoList, +writeAuspiceMeta(jw, sti->subtreeUserSampleIds, source, db, colorFields, geneInfoList, gSeqWin->end); jsonWriteObjectStart(jw, "tree"); int nodeNum = 10000; // Auspice.us starting node number for newick -> json int depth = 0; // Add an extra root node because otherwise Auspice won't draw branch from big tree root to subtree struct phyloTree *root = phyloTreeNewNode("wrapper"); phyloAddEdge(root, tree); tree = root; struct auspiceJsonInfo aji = { jw, sti->subtreeUserSampleIds, geneInfoList, gSeqWin, sampleMetadata, sampleUrls, nodeNum, source }; rTreeToAuspiceJson(tree, depth, &aji, NULL, NULL, NULL, NULL, NULL, NULL, NULL); jsonWriteObjectEnd(jw); // tree jsonWriteObjectEnd(jw); // top-level object fputs(jw->dy->string, outF); jsonWriteFree(&jw); carefulClose(&outF); }