092b1f6d8b05019906c903090236b8d7a3a59220
lrnassar
  Wed May 29 16:04:16 2024 -0700
Addin the desc page for the spliceAI track, refs #27141

diff --git src/hg/makeDb/trackDb/human/spliceAI.html src/hg/makeDb/trackDb/human/spliceAI.html
new file mode 100644
index 0000000..05fdbd6
--- /dev/null
+++ src/hg/makeDb/trackDb/human/spliceAI.html
@@ -0,0 +1,77 @@
+<!DOCTYPE html>
+<html>
+<head>
+</head>
+
+<body>
+<h2>Description</h2>
+<p>
+SpliceAI is an <a href="https://github.com/Illumina/SpliceAI" target="_blank">open-source</a> deep
+learning splicing prediction algorithm that can predict splicing alterations caused by DNA variations. 
+Such variants may activate nearby cryptic splice sites, leading to abnormal transcript isoforms.
+SpliceAI was developed at Illumina; a 
+<a href="https://spliceailookup.broadinstitute.org" target="_blank">lookup tool</a> 
+is provided by the Broad institute.
+</p>
+
+<h2>Display Conventions</h2>
+<p>
+Variants are colored by their predicted effects:
+<ul>
+<li><b><font color="#FF0000">Acceptor gain (red)</font></b> </li>
+<li><b><font color="#FF8000">Acceptor loss (orange)</font></b> </li>
+<li><b><font color="#0000FF">Donor gain (blue)</font></b> </li>
+<li><b><font color="#D400FF">Donor loss (violet)</font></b> </li>
+</ul>
+Mouseover on items shows the variant, gene name, type of change (donor gain/loss, acceptor gain/loss), 
+location of affected cryptic splice, and spliceAI score. Clicking on any item brings up a table with this
+information.
+</p>
+
+<h2>Data Access</h2>
+The raw data can be explored interactively with the
+<a href="https://genome.ucsc.edu/cgi-bin/hgTables">Table Browser</a> or the
+<a href="https://genome.ucsc.edu/cgi-bin/hgIntegrator">Data Integrator</a>.
+For automated analysis, the data may be queried from our
+<a href="https://genome.ucsc.edu/goldenPath/help/api.html">REST API</a>.<br>
+Please refer to our
+<a href="https://groups.google.com/a/soe.ucsc.edu/forum/#!forum/genome">mailing list archives</a>
+for questions, or our
+<a href="https://genome.ucsc.edu/FAQ/FAQdownloads.html#downloads36">Data Access FAQ</a>
+for more information.
+<p>
+SpliceAI scores for hg38 were obtained in VCF format from 
+<a href="https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_plugins" target="_blank">the Ensembl ftp site</a>.
+</p>
+
+<h2>Methods</h2>
+<p>
+The spliceAI scores are represented in the VCF INFO field as 
+<code style="background-color: lightgray;">SpliceAI=G|OR4F5|0.01|0.00|0.00|0.00|-32|49|-40|-31</code> <br>
+Here, the pipe-separated fields contain 
+<ul>
+<li>ALT allele</li>
+<li>Gene name</li>
+<li>Acceptor gain score</li>
+<li>Acceptor loss score</li>
+<li>Donor gain score</li>
+<li>Donor loss score</li>
+<li>Relative location of affected cryptic acceptor</li>
+<li>Relative location of affected acceptor</li>
+<li>Relative location of affected cryptic donor</li>
+<li>Relative location of affected donor</li>
+</ul>
+To create the track we selected only those variants with a score equal to or greater than 0.02.
+</p>
+
+<h2>References</h2>
+<p>
+Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA,
+Arbelaez J, Cui W, Schwartz GB <em>et al</em>.
+<a href="https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(18)31629-5" target="_blank">
+Predicting Splicing from Primary Sequence with Deep Learning</a>.
+<em>Cell</em>. 2019 Jan 24;176(3):535-548.e24.
+PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/30661751" target="_blank">30661751</a>
+</p>
+</body>
+</html>