8c2f7318d8d821de9b2a25750586a94ab5e8c1bb
lrnassar
  Fri Nov 15 18:50:19 2024 -0800
Giving the UI link cronjob some love by fixing all the 301 redirects. These are the bulk of the items listed on the cron. No RM.

diff --git src/hg/makeDb/trackDb/fantom5.html src/hg/makeDb/trackDb/fantom5.html
index d1eab36..4d699ce 100644
--- src/hg/makeDb/trackDb/fantom5.html
+++ src/hg/makeDb/trackDb/fantom5.html
@@ -1,157 +1,157 @@
 <H2>Description</H2>
 <p>
 The FANTOM5 track shows mapped transcription start sites (TSS) and their usage in primary cells,
 cell lines, and tissues to produce a comprehensive overview of gene expression across the human
 body by using single molecule sequencing.
 </p>
 
 <h2> Display Conventions and Configuration </h2>
 
 <p> Items in this track are colored according to their strand orientation. <b><font color=blue>Blue
 indicates alignment to the negative strand</font></b>, and <b><font color=red>red indicates
 alignment to the positive strand</font></b>.
 </p>
 
 <h2>Methods</h2>
 <h4>Protocol </h4>
 <p> Individual biological states are profiled by HeliScopeCAGE, which is a variation of the CAGE
 (Cap Analysis Gene Expression) protocol based on a single molecule sequencer. The standard protocol
 requiring 5 &micro;g of total RNA as a starting material is referred to as <b>hCAGE</b>, and an
 optimized version for a lower quantity (~ 100 ng) is referred to as <b>LQhCAGE</b> (Kanamori-Katyama
 et al. 2011).
 <ul>
 <li>hCAGE</li>
 <li>LQhCAGE</li>
 </ul>
 </p>
 <h4>Samples</h4>
 <p>Transcription start sites (TSSs) were mapped and their usage in human, mouse, dog, rat, macaque
 and chicken primary cells, cell lines, and tissues was to produce a comprehensive overview of
 mammalian gene expression across the human body. 5&prime;-end of the mapped CAGE reads are counted
 at a single base pair resolution (CTSS, CAGE tag starting sites) on the genomic coordinates, which
 represent TSS activities in the sample. Individual samples shown in "TSS activity" tracks are
 grouped as below.
 <ul>
 <li>Primary cell</li>
 <li>Tissue</li>
 <li>Cell Line</li>
 <li>Time course</li>
 <li>Fractionation</li>
 </ul>
 </p>
 <h4>TSS peaks and enhancers</h4>
 <p>TSS (CAGE) peaks across the panel of the biological states (samples) are identified by DPI
 (decomposition based peak identification, Forrest et al. 2014), where each of the peaks consists of
 neighboring and related TSSs. The peaks are used as anchors to define promoters and units of
 promoter-level expression analysis. Two subsets of the peaks are defined based on evidence of read
 counts, depending on scopes of subsequent analyses, and the first subset (referred as a
 <b>robust set</b> of the peaks, thresholded for expression analysis is shown as TSS peaks. The
 summary tracks consist of the TSS (CAGE) peaks, the enhancers, and summary profiles of TSS
 activities (total and maximum values). The summary track consists of the following tracks.
 <ul>
 <li> TSS (CAGE) peaks
 <ul>
   <li> the robust peaks </li>
 </ul>
 </li>
 <li> TSS summary profiles
 <ul>
 <li> Total counts and TPM (tags per million) in all the samples </li>
 <li> Maximum counts and TPM among the samples </li>
 </ul>
 </li>
 </ul>
 
 <h4>TSS activity</h4>
 <p>
 5&prime;-end of the mapped CAGE reads are counted at a single base pair resolution (CTSS, CAGE tag starting sites) on the genomic coordinates, which represent TSS activities in the sample. The read counts tracks indicate raw counts of CAGE reads, and the TPM tracks indicate normalized counts as TPM (tags per million).
 </p>
 
 <dl>
 <dt> Categories of individual samples </dt>
 <dd>- Cell Line hCAGE</dd>
 <dd>- Cell Line LQhCAGE</dd>
 <dd>- fractionation hCAGE</dd>
 <dd>- Primary cell hCAGE</dd>
 <dd>- Primary cell LQhCAGE</dd>
 <dd>- Time course hCAGE</dd>
 <dd>- Tissue hCAGE</dd>
 </dl>
 
 <h2>Data Access</h2>
 <p>
 FANTOM5 data can be explored interactively with the
 <a href="../cgi-bin/hgTables">Table Browser</a> and cross-referenced with the 
 <a href="../cgi-bin/hgIntegrator">Data Integrator</a>. For programmatic access,
 the track can be accessed using the Genome Browser&apos;s
 <a href="../../goldenPath/help/api.html">REST API</a>.
 ReMap annotations can be downloaded from the
 <a href="https://hgdownload.soe.ucsc.edu/gbdb/$db/reMap">Genome Browser's download server</a>
 as a bigBed file. This compressed binary format can be remotely queried through
 command line utilities. Please note that some of the download files can be quite large.</p>
 
 <p>
 The FANTOM5 reprocessed data can be found and downloaded on the <a href="https://fantom.gsc.riken.jp/5/datafiles/reprocessed/"
 target="_blank">FANTOM website.</a></p>
 
 <h2>Credits</h2>
 
 <p>
 Thanks to Shuhei Noguchi, the <a href="https://fantom.gsc.riken.jp/5/" target=_blank>FANTOM5 consortium</a>,
 the Large Scale Data Managing Unit and Preventive Medicine and
-Applied Genomics Unit, the <a href="http://www.riken.jp/en/research/labs/ims/" 
+Applied Genomics Unit, the <a href="https://www.riken.jp/en/research/labs/ims/" 
 target=_blank>Center for Integrative Medical Sciences (IMS)</a>, and
-<a href="http://www.riken.jp/" target=_blank>RIKEN</a> for providing this data
+<a href="https://www.riken.jp/" target=_blank>RIKEN</a> for providing this data
 and its analysis.</p>
 
 <h2>References</h2>
 <p>
 Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C,
 Suzuki T <em>et al</em>.
 <a href="https://doi.org/10.1038/nature12787" target="_blank">
 An atlas of active enhancers across human cell types and tissues</a>.
 <em>Nature</em>. 2014 Mar 27;507(7493):455-461.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/24670763" target="_blank">24670763</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215096/" target="_blank">PMC5215096</a>
 </p>
 
 <p>
 Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drablos F, Lennartsson A, Ronnerblad M
 Hrydziuszko O, Vitezic M  <em>et al</em>.
 <a href="https://doi.org/10.1126/science.1259418" target="_blank">
 Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells</a>.
 <em>Science</em>. 2015 Feb 27;347(6225):1010-4. 
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/25678556" target="_blank">25678556</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433" target="_blank">PMC4681433</a>
 </p> 
 
 <p>
 FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest AR, Kawaji H, Rehli M, Baillie JK, de
 Hoon MJ, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M <em>et al</em>.
 <a href="https://doi.org/10.1038/nature13182" target="_blank">
 A promoter-level mammalian expression atlas</a>.
 <em>Nature</em>. 2014 Mar 27;507(7493):462-70.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/24670764" target="_blank">24670764</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529748/" target="_blank">PMC4529748</a>
 </p>
 
 <p>
 Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, Bertin N, Kaiho A, Ninomiya
 N, Daub CO <em>et al</em>.
-<a href="http://genome.cshlp.org/cgi/pmidlookup?view=long&amp;pmid=21596820" target="_blank">
+<a href="https://genome.cshlp.org/cgi/content/long/" target="_blank">
 Unamplified cap analysis of gene expression on a single-molecule sequencer</a>.
 <em>Genome Res</em>. 2011 Jul;21(7):1150-9.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/21596820" target="_blank">21596820</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129257/" target="_blank">PMC3129257</a>
 </p>
 
 <p>
 Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F,
 Ishikawa-Kato S <em>et al</em>.
 <a href="https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0560-6"
 target="_blank">
 Gateways to the FANTOM5 promoter level mammalian expression atlas</a>.
 <em>Genome Biol</em>. 2015 Jan 5;16(1):22.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/25723102" target="_blank">25723102</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310165/" target="_blank">PMC4310165</a>
 </p>