859df2c7c8948da00a2305e90fafe00016032ca7 gperez2 Thu May 8 12:41:02 2025 -0700 code review edits, refs #35693 diff --git src/hg/makeDb/trackDb/human/vistaEnhancersBb.html src/hg/makeDb/trackDb/human/vistaEnhancersBb.html index ca90a00db56..d85ecced2aa 100644 --- src/hg/makeDb/trackDb/human/vistaEnhancersBb.html +++ src/hg/makeDb/trackDb/human/vistaEnhancersBb.html @@ -5,31 +5,31 @@ in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. More information can be found on the VISTA Enhancer Browser page.
Items appearing in blue (positive) indicate that a reproducible pattern was observed in the in vivo enhancer assay under at least one of the tested conditions. Items appearing in gray (negative) indicate that NO reproducible pattern was observed in the in vivo enhancer assay under any of the tested conditions. This does not exclude the possibility that this region is a reproducible enhancer active under different conditions, for example at an earlier or later timepoint in development.
Excerpted from the Vista Enhancer Mouse Enhancer Screen Handbook and Methods page at the Lawrence Berkeley +target="_blank">Mouse Enhancer Screen Handbook and Methods page at the Lawrence Berkeley National Laboratory (LBNL) website:
Most enhancer candidate sequences are identified by extreme evolutionary sequence conservation or by ChIP-seq. Detailed information related to enhancer identification by extreme evolutionary conservation can be found in the following publications:
Detailed information related to enhancer identification by ChIP-seq can be found in the following publications:
See the Transgenic Mouse Assay section for experimental procedures that were used to perform the transgenic assays: Mouse Enhancer Screen Handbook and Methods +target="_blank">Mouse Enhancer Screen Handbook and Methods
UCSC converted the vista-data bed files for hg38 and mm10 into bigBed format using the bedToBigBed utility. The data for mm39 was lifted over from mm10. The data for hg19 was lifted over from hg38.
VISTA Enhancers data can be explored interactively with the Table Browser and cross-referenced with the Data Integrator. For programmatic access, the track can be accessed using the Genome Browser's REST API. ReMap annotations can be downloaded from the Genome Browser's download server as a bigBed file. This compressed binary format can be remotely queried through