3bcdba0cb7f7281dc131c2c59684980741a841e6
mspeir
  Tue Dec 23 15:34:36 2025 -0800
Adding better description of species coloring in conservation tracks, refs #27217

diff --git src/hg/makeDb/trackDb/mouse/mm10/cons60way.html src/hg/makeDb/trackDb/mouse/mm10/cons60way.html
index ec7a64ddde9..8f1e9fe4dbc 100644
--- src/hg/makeDb/trackDb/mouse/mm10/cons60way.html
+++ src/hg/makeDb/trackDb/mouse/mm10/cons60way.html
@@ -1,528 +1,530 @@
 <P>
 Downloads for data in this track are available:
 <UL>
 <LI>
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way/">Multiz alignments</A> (MAF format), and phylogenetic trees
 <LI>
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phyloP60way/">PhyloP conservation</A> (WIG format)
 <LI>
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phastCons60way/">PhastCons conservation</A> (WIG format)
 </UL>
 
 <H2>Description</H2>
 <P>
 This track shows multiple alignments of 60 vertebrate
 species and measurements of evolutionary conservation using
 two methods (<em>phastCons</em> and <em>phyloP</em>) from the
 <A HREF="http://compgen.cshl.edu/phast/" target=_BLANK>
 PHAST package</A>, for
 all species (vertebrate) and three subsets (Glires, Euarchontoglires and placental mammal).
 The multiple alignments were generated using multiz and
 other tools in the UCSC/<A HREF="http://www.bx.psu.edu/miller_lab/"
 TARGET=_blank>Penn State Bioinformatics</A>
 comparative genomics alignment pipeline.
 Conserved elements identified by phastCons are also displayed in
 this track.
 </P>
 <P>
 PhastCons is a hidden Markov model-based method that estimates the probability that each
 nucleotide belongs to a conserved element, based on the multiple alignment.
 It considers not just each individual alignment column, but also its
 flanking columns.  By contrast, phyloP separately measures conservation at
 individual columns, ignoring the effects of their neighbors.  As a
 consequence, the phyloP plots have a less smooth appearance than the
 phastCons plots, with more "texture" at individual sites.  The two methods
 have different strengths and weaknesses.  PhastCons is sensitive to "runs"
 of conserved sites, and is therefore effective for picking out conserved
 elements.  PhyloP, on the other hand, is more appropriate for evaluating
 signatures of selection at particular nucleotides or classes of nucleotides
 (e.g., third codon positions, or first positions of miRNA target sites).
 </P>
 <P>
 Another important difference is that phyloP can measure acceleration
 (faster evolution than expected under neutral drift) as well as
 conservation (slower than expected evolution).  In the phyloP plots, sites
 predicted to be conserved are assigned positive scores (and shown in blue),
 while sites predicted to be fast-evolving are assigned negative scores (and
 shown in red).  The absolute values of the scores represent -log p-values
 under a null hypothesis of neutral evolution.  The phastCons scores, by
 contrast, represent probabilities of negative selection and range between 0
 and 1.
 </P>
 <P>
 Both phastCons and phyloP treat alignment gaps and unaligned nucleotides as
 missing data, and both were run with the same parameters for each
 species set (Glires, Euarchontoglires, placental mammals, and vertebrates).
 Thus, in regions in which only Glires appear in the alignment, all four
 sets of scores will be the same, but in regions in which additional species
 are available, the Euarchontoglires, placental mammal, and/or vertebrate scores
 may differ from the Glires scores.  The alternative
 plots help to identify sequences that are under different evolutionary
 pressures in, for example, Glires and non-Glires, or placentals and non-placentals.
 </P>
 
 <P>
 UCSC has repeatmasked and aligned the low-coverage genome assemblies, and
 provides the sequence for download; genome browsers are under construction
 and will be released over time. Missing sequence in the low-coverage
 assemblies is highlighted in the track display by regions of yellow when
 zoomed out and by Ns when displayed at base level (see <EM>Gap Annotation</EM>, below).</P>
 <P>
 <BLOCKQUOTE><TABLE class="stdTbl">
 <TR><TH COLSPAN=5>Glires subset</TH></TR>
 <TR ALIGN=left><TH>Organism</TH><TH>Species</TH><TH>Release date</TH><TH>UCSC version</TH><TH>Alignment type</TH></TR>
 <TR ALIGN=left><TD>Mouse</TD><TD>Mus musculus</TD><TD>Dec. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=mm10"    TARGET=_blank>GRCm38/mm10</A></TD><TD>reference species</TD></TR>
 <TR ALIGN=left><TD>Guinea pig</TD><TD>Cavia porcellus</TD><TD>Feb. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=cavPor3"    TARGET=_blank>Broad/cavPor3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Kangaroo rat</TD><TD>Dipodomys ordii</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=dipOrd1"    TARGET=_blank>Broad/dipOrd1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Naked mole-rat</TD><TD>Heterocephalus glaber</TD><TD>Jan. 2012</TD><TD><A HREF="../cgi-bin/hgGateway?db=hetGla2"    TARGET=_blank>Broad HetGla_female_1.0/hetGla2</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Pika</TD><TD>Ochotona princeps</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=ochPri2"    TARGET=_blank>Broad/ochPri2</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Rabbit</TD><TD>Oryctolagus cuniculus</TD><TD>Apr. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=oryCun2"    TARGET=_blank>Broad/oryCun2</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Rat</TD><TD>Rattus norvegicus</TD><TD>Mar. 2012</TD><TD><A HREF="../cgi-bin/hgGateway?db=rn5"    TARGET=_blank>RGSC 5.0/rn5</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Squirrel</TD><TD>Spermophilus tridecemlineatus</TD><TD>Nov. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=speTri2"    TARGET=_blank>Broad/speTri2</A></TD><TD>Syntenic net</TD></TR>
 <TR><TH COLSPAN=5>Euarchontoglires subset - the Glires set above, plus:</TH></TR>
 <TR ALIGN=left><TH>Organism</TH><TH>Species</TH><TH>Release date</TH><TH>UCSC version</TH><TH>Alignment type</TH></TR>
 <TR ALIGN=left><TD>Baboon</TD><TD>Papio hamadryas</TD><TD>Nov. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=papHam1"    TARGET=_blank>Baylor 1.0/papHam1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Bushbaby</TD><TD>Otolemur garnettii</TD><TD>Mar. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=otoGar3"    TARGET=_blank>Broad/otoGar3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Chimp</TD><TD>Pan troglodytes</TD><TD>Feb. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=panTro4"    TARGET=_blank>WUGSC Pan_troglodytes-2.1.4/panTro4</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Rhesus</TD><TD>Macaca mulatta</TD><TD>Oct. 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=rheMac3"    TARGET=_blank>BGI CR_1.0/rheMac3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Gibbon</TD><TD>Nomascus leucogenys</TD><TD>Jun. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=nomLeu2"    TARGET=_blank>GGSC Nleu1.1/nomLeu2</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Gorilla</TD><TD>Gorilla gorilla gorilla</TD><TD>May 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=gorGor3"    TARGET=_blank>WTSI/gorGor3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Human</TD><TD>Homo sapiens</TD><TD>Feb. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=hg19"    TARGET=_blank>GRCh37/hg19</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Marmoset</TD><TD>Callithrix jacchus</TD><TD>Mar. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=calJac3"    TARGET=_blank>WUGSC 3.2/calJac3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Mouse lemur</TD><TD>Microcebus murinus</TD><TD>Jun. 2003</TD><TD><A HREF="../cgi-bin/hgGateway?db=micMur1"    TARGET=_blank>Broad/micMur1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Orangutan</TD><TD>Pongo pygmaeus abelii</TD><TD>Jul. 2007</TD><TD><A HREF="../cgi-bin/hgGateway?db=ponAbe2"    TARGET=_blank>WUGSC 2.0.2/ponAbe2</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Squirrel monkey</TD><TD>Saimiri boliviensis</TD><TD>Oct. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=saiBol1"    TARGET=_blank>Broad/saiBol1</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Tarsier</TD><TD>Tarsius syrichta</TD><TD>Aug. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=tarSyr1"    TARGET=_blank>Broad/tarSyr1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Tree shrew</TD><TD>Tupaia belangeri</TD><TD>Dec. 2006</TD><TD><A HREF="../cgi-bin/hgGateway?db=tupBel1"    TARGET=_blank>Broad/tupBel1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR><TH COLSPAN=5>Placental mammal subset - the Glires and Euarchontoglires sets above, plus:</TH></TR>
 <TR ALIGN=left><TH>Organism</TH><TH>Species</TH><TH>Release date</TH><TH>UCSC version</TH><TH>Alignment type</TH></TR>
 <TR ALIGN=left><TD>Alpaca</TD><TD>Vicugna pacos</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=vicPac1"    TARGET=_blank>Broad/vicPac1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Armadillo</TD><TD>Dasypus novemcinctus</TD><TD>Dec. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=dasNov3"    TARGET=_blank>Baylor/dasNov3</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Cat</TD><TD>Felis catus</TD><TD>Sep. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=felCat5"    TARGET=_blank>ICGSC Felis_catus 6.2/felCat5</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Cow</TD><TD>Bos taurus</TD><TD>Oct. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=bosTau7"    TARGET=_blank>Baylor Btau_4.6.1/bosTau7</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Dog</TD><TD>Canis lupus familiaris</TD><TD>Sep. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=canFam3"    TARGET=_blank>Broad/canFam3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Dolphin</TD><TD>Tursiops truncatus</TD><TD>Oct. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=turTru2"    TARGET=_blank>Baylor Ttru_1.4/turTru2</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Elephant</TD><TD>Loxodonta africana</TD><TD>Jul. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=loxAfr3"    TARGET=_blank>Broad/loxAfr3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Hedgehog</TD><TD>Erinaceus europaeus</TD><TD>Jun. 2006</TD><TD><A HREF="../cgi-bin/hgGateway?db=eriEur1"    TARGET=_blank>Broad/eriEur1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Horse</TD><TD>Equus caballus</TD><TD>Sep. 2007</TD><TD><A HREF="../cgi-bin/hgGateway?db=equCab3"    TARGET=_blank>EquCab3.0/equCab3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Little brown bat</TD><TD>Myotis lucifugus</TD><TD>Jul. 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=myoLuc2"    TARGET=_blank>Broad/myoLuc2</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Manatee</TD><TD>Trichechus manatus latirostris</TD><TD>Oct. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=triMan1"    TARGET=_blank>Broad v1.0/triMan1</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Megabat</TD><TD>Pteropus vampyrus</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=pteVam1"    TARGET=_blank>Broad/pteVam1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Panda</TD><TD>Ailuropoda melanoleuca</TD><TD>Dec. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=ailMel1"    TARGET=_blank>BGI-Shenzhen 1.0/ailMel1</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Pig</TD><TD>Sus scrofa</TD><TD>Aug. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=susScr3"    TARGET=_blank>SGSC Sscrofa10.2/susScr3</A></TD><TD>Syntenic net</TD></TR>
 <TR ALIGN=left><TD>Rock hyrax</TD><TD>Procavia capensis</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=proCap1"    TARGET=_blank>Broad/proCap1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Sheep</TD><TD>Ovis aries</TD><TD>Feb. 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=oviAri1"    TARGET=_blank>ISGC Ovis_aries_1.0/oviAri1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Shrew</TD><TD>Sorex araneus</TD><TD>Jun. 2006</TD><TD><A HREF="../cgi-bin/hgGateway?db=sorAra1"    TARGET=_blank>Broad/sorAra1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Sloth</TD><TD>Choloepus hoffmanni</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=choHof1"    TARGET=_blank>Broad/choHof1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>Tenrec</TD><TD>Echinops telfairi</TD><TD>Jul. 2005</TD><TD><A HREF="../cgi-bin/hgGateway?db=echTel1"    TARGET=_blank>Broad/echTel1</A></TD><TD>Reciprocal best net</TD></TR>
 <TR><TH COLSPAN=5>All species (vertebrate) - the three sets above, plus:</TH></TR>
 <TR ALIGN=left><TH>Organism</TH><TH>Species</TH><TH>Release date</TH><TH>UCSC version</TH><TH>Alignment type</TH></TR>
 <TR ALIGN=left><TD>Atlantic cod</TD><TD>Gadus morhua</TD><TD>May. 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=gadMor1"    TARGET=_blank>Genofisk GadMor_May2010/gadMor1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Budgerigar</TD><TD>Melopsittacus undulatus</TD><TD>Sep. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=melUnd1"    TARGET=_blank>WUGSC v6.3/melUnd1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Chicken</TD><TD>Gallus gallus</TD><TD>Nov. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=galGal4"    TARGET=_blank>ICGSC Gallus_gallus-4.0/galGal4</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Coelacanth</TD><TD>Latimeria chalumnae</TD><TD>Aug. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=latCha1"    TARGET=_blank>Broad/latCha1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Fugu</TD><TD>Takifugu rubripes</TD><TD>Oct. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=fr3"    TARGET=_blank>FUGU5/fr3</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Lamprey</TD><TD>Petromyzon marinus</TD><TD>Mar. 2007</TD><TD><A HREF="../cgi-bin/hgGateway?db=petMar1"    TARGET=_blank>WUGSC 3.0/petMar1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Lizard</TD><TD>Anolis carolinensis</TD><TD>May 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=anoCar2"    TARGET=_blank>Broad/anoCar2</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Medaka</TD><TD>Oryzias latipes</TD><TD>Oct. 2005</TD><TD><A HREF="../cgi-bin/hgGateway?db=oryLat2"    TARGET=_blank>NIG/UT MEDAKA1/oryLat2</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Nile tilapia</TD><TD>Oreochromis niloticus</TD><TD>Jan. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=oreNil2"    TARGET=_blank>Broad/oreNil2</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Opossum</TD><TD>Monodelphis domestica</TD><TD>Oct. 2006</TD><TD><A HREF="../cgi-bin/hgGateway?db=monDom5"    TARGET=_blank>Broad/monDom5</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Painted turtle</TD><TD>Chrysemys picta bellii</TD><TD>Dec. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=chrPic1"    TARGET=_blank>IPTGSC v3.0.1/chrPic1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Platypus</TD><TD>Ornithorhynchus anatinus</TD><TD>Mar. 2007</TD><TD><A HREF="../cgi-bin/hgGateway?db=ornAna1"    TARGET=_blank>WUGSC 5.0.1/ornAna1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Stickleback</TD><TD>Gasterosteus aculeatus</TD><TD>Feb. 2006</TD><TD><A HREF="../cgi-bin/hgGateway?db=gasAcu1"    TARGET=_blank>Broad/gasAcu1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Tasmanian devil</TD><TD>Sarcophilus harrisii</TD><TD>Feb. 2011</TD><TD><A HREF="../cgi-bin/hgGateway?db=sarHar1"    TARGET=_blank>WTSI Devil_ref v7.0/sarHar1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Tetraodon</TD><TD>Tetraodon nigroviridis</TD><TD>Mar. 2007</TD><TD><A HREF="../cgi-bin/hgGateway?db=tetNig2"    TARGET=_blank>Genoscope 8.0/tetNig2</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Turkey</TD><TD>Meleagris gallopavo</TD><TD>Dec. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=melGal1"    TARGET=_blank>TGC Turkey_2.01/melGal1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Wallaby</TD><TD>Macropus eugenii</TD><TD>Sep. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=macEug2"    TARGET=_blank>TWGS Meug_1.1/macEug2</A></TD><TD>Reciprocal best net</TD></TR>
 <TR ALIGN=left><TD>X. tropicalis</TD><TD>Xenopus tropicalis</TD><TD>Nov. 2009</TD><TD><A HREF="../cgi-bin/hgGateway?db=xenTro3"    TARGET=_blank>JGI 4.2/xenTro3</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Zebra finch</TD><TD>Taeniopygia guttata</TD><TD>Jul. 2008</TD><TD><A HREF="../cgi-bin/hgGateway?db=taeGut1"    TARGET=_blank>WUGSC 3.2.4/taeGut1</A></TD><TD>Net</TD></TR>
 <TR ALIGN=left><TD>Zebrafish</TD><TD>Danio rerio</TD><TD>Jul. 2010</TD><TD><A HREF="../cgi-bin/hgGateway?db=danRer7"    TARGET=_blank>WTSI Zv9/danRer7</A></TD><TD>Net</TD></TR>
 </TABLE><BR>
 <B>Table 1.</B> <EM>Genome assemblies included in the 60-way Conservation track.</EM><BR>
 </BLOCKQUOTE></P>
 
 <H2>Display Conventions and Configuration</H2>
 <P>
 The track configuration options allow the user to display any of the
 subset conservation scores, or all simultaneously.
 In full and pack display modes, conservation scores are displayed as a
 <EM>wiggle track</EM> (histogram) in which the height reflects the
 size of the score.
 The conservation wiggles can be configured in a variety of ways to
 highlight different aspects of the displayed information.
 Click the <A HREF="../goldenPath/help/hgWiggleTrackHelp.html"
 TARGET=_blank>Graph configuration help</A> link for an explanation
 of the configuration options.</P>
 <P>
 Pairwise alignments of each species to the $organism genome are
 displayed below the conservation histogram as a grayscale density plot (in
 pack mode) or as a wiggle (in full mode) that indicates alignment quality.
 In dense display mode, conservation is shown in grayscale using
 darker values to indicate higher levels of overall conservation
 as scored by phastCons. </P>
 <P>
 Checkboxes on the track configuration page allow selection of the
 species to include in the pairwise display.
+The names of selected species are colored according to their clade,
+alternating between blue and green.
 Note that excluding species from the pairwise display does not alter the
 the conservation score display.</P>
 <P>
 To view detailed information about the alignments at a specific
 position, zoom the display in to 30,000 or fewer bases, then click on
 the alignment. For the Conserved Elements track, the name, or 'lod' of the items,
 signifies the raw output scores from phastCons. These scores were then transformed
 from 0-1000 for the score column of the track.
 See the methods section for more details.</P>
 
 <H3>Gap Annotation</H3>
 <P>
 The <EM>Display chains between alignments</EM> configuration option
 enables display of gaps between alignment blocks in the pairwise alignments in
 a manner similar to the Chain track display.  The following
 conventions are used:
 <UL>
 <LI><B>Single line:</B> No bases in the aligned species. Possibly due to a
 lineage-specific insertion between the aligned blocks in the $organism genome
 or a lineage-specific deletion between the aligned blocks in the aligning
 species.
 <LI><B>Double line:</B> Aligning species has one or more unalignable bases in
 the gap region. Possibly due to excessive evolutionary distance between
 species or independent indels in the region between the aligned blocks in both
 species.
 <LI><B>Pale yellow coloring:</B> Aligning species has Ns in the gap region.
 Reflects uncertainty in the relationship between the DNA of both species, due
 to lack of sequence in relevant portions of the aligning species.
 </UL></P>
 
 <H3>Genomic Breaks</H3>
 <P>
 Discontinuities in the genomic context (chromosome, scaffold or region) of the
 aligned DNA in the aligning species are shown as follows:
 <UL>
 <LI>
 <B>Vertical blue bar:</B> Represents a discontinuity that persists indefinitely
 on either side, <em>e.g.</em> a large region of DNA on either side of the bar
 comes from a different chromosome in the aligned species due to a large scale
 rearrangement.
 <LI>
 <B>Green square brackets:</B> Enclose shorter alignments consisting of DNA from
 one genomic context in the aligned species nested inside a larger chain of
 alignments from a different genomic context. The alignment within the
 brackets may represent a short misalignment, a lineage-specific insertion of a
 transposon in the $organism genome that aligns to a paralogous copy somewhere
 else in the aligned species, or other similar occurrence.
 </UL></P>
 
 <H3>Base Level</H3>
 <P>
 When zoomed-in to the base-level display, the track shows the base
 composition of each alignment. The numbers and symbols on the Gaps
 line indicate the lengths of gaps in the $organism sequence at those
 alignment positions relative to the longest non-$organism sequence.
 If there is sufficient space in the display, the size of the gap is shown.
 If the space is insufficient and the gap size is a multiple of 3, a
 &quot;*&quot; is displayed; other gap sizes are indicated by &quot;+&quot;.</P>
 <P>
 Codon translation is available in base-level display mode if the
 displayed region is identified as a coding segment. To display this annotation,
 select the species for translation from the pull-down menu in the Codon
 Translation configuration section at the top of the page. Then, select one of
 the following modes:
 <UL>
 <LI>
 <B>No codon translation:</B> The gene annotation is not used; the bases are
 displayed without translation.
 <LI>
 <B>Use default species reading frames for translation:</B> The annotations from
 the genome displayed in the <EM>Default species to establish reading frame</EM>
 pull-down menu are used to translate all the aligned species present in the
 alignment.
 <LI>
 <B>Use reading frames for species if available, otherwise no translation:</B>
 Codon translation is performed only for those species where the region is
 annotated as protein coding.
 <LI><B>Use reading frames for species if available, otherwise use default species:</B>
 Codon translation is done on those species that are annotated as being protein
 coding over the aligned region using species-specific annotation; the remaining
 species are translated using the default species annotation.
 </UL></P>
 <P>
 Codon translation uses the following gene tracks as the basis for translation:
 
 <BLOCKQUOTE><TABLE class="stdTbl">
 <TR ALIGN=left><TD><B>Gene Track</B></TD><TD><B>Species</B></TD></TR>
 <TR ALIGN=left><TD>UCSC Genes</TD><TD>human</TD></TR>
 <TR ALIGN=left><TD>RefSeq Genes</TD><TD>chicken, cow, mouse, pig, rat, rhesus,
 frog (x. tropicalis), zebrafish</TD></TR>
 <TR ALIGN=left><TD>Ensembl Genes v65</TD><TD>fugu</TD></TR>
 <TR ALIGN=left><TD>Ensembl Genes v75</TD><TD>alpaca, chimp, elephant,
 gorilla, guinea pig, hedgehog, horse, kangaroo rat, lizard, marmoset, medaka,
 megabat, microbat, mouse lemur, opossum, orangutan, panda, pika, platypus,
 rabbit, rock hyrax, shrew, sloth, stickleback, tarsier, tenrec, tetraodon,
 tree shrew, turkey, zebra finch</TD></TR>
 <TR ALIGN=left><TD>Other RefSeq</TD><TD>armadillo, baboon, bushbaby, cat,
 coelacanth, dog, gibbon, lamprey, manatee, naked mole-rat, painted turtle,
 sheep, squirrel monkey, tasmanian devil, wallaby</TD></TR>
 <TR ALIGN=left><TD>Genscan Genes</TD><TD>atlantic cod, budgerigar, dolphin,
 nile tilapia, squirrel</TD></TR>
 </TABLE>
 <B>Table 2.</B> <EM>Gene tracks used for codon translation.</EM>
 </BLOCKQUOTE></P>
 
 <H2>Methods</H2>
 <P>
 Pairwise alignments with the $organism genome were generated for
 each species using lastz from repeat-masked genomic sequence.
 Pairwise alignments were then linked into chains using a dynamic programming
 algorithm that finds maximally scoring chains of gapless subsections
 of the alignments organized in a kd-tree.
 The scoring matrix and parameters for pairwise alignment and chaining
 were tuned for each species based on phylogenetic distance from the reference.
 High-scoring chains were then placed along the genome, with
 gaps filled by lower-scoring chains, to produce an alignment net.
 For more information about the chaining and netting process and
 parameters for each species, see the description pages for the Chain and Net
 tracks.</P>
 <P>
 An additional filtering step was introduced in the generation of the 60-way
 conservation track to reduce the number of paralogs and pseudogenes from the
 high-quality assemblies and the suspect alignments from the low-quality
 assemblies:
 the pairwise alignments of high-quality mammalian
 sequences (placental and marsupial) were filtered based on synteny;
 those for 2X mammalian genomes were filtered to retain only
 alignments of best quality in both the target and query (&quot;reciprocal
 best&quot;).</P>
 <P>
 The resulting best-in-genome pairwise alignments
 were progressively aligned using multiz/autoMZ,
 following the tree topology diagrammed above, to produce multiple alignments.
 The multiple alignments were post-processed to
 add annotations indicating alignment gaps, genomic breaks,
 and base quality of the component sequences.
 The annotated multiple alignments, in MAF format, are available for
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way"
 TARGET=_blank>bulk download</A>.
 An alignment summary table containing an entry for each
 alignment block in each species was generated to improve
 track display performance at large scales.
 Framing tables were constructed to enable
 visualization of codons in the multiple alignment display.</P>
 
 <h3> Phylogenetic Tree Model</h3>
 <P>
 Both <em>phastCons</em> and <em>phyloP</em> are phylogenetic methods that rely
 on a tree model containing the tree topology, branch lengths representing
 evolutionary distance at neutrally evolving sites, the background distribution
 of nucleotides, and a substitution rate matrix.
 The
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phastCons60way/mm10.60way.phastCons.mod"
 TARGET=_blank>all-species tree model</A> for this track was
 generated using the <em>phyloFit</em> program from the PHAST package
 (REV model, EM algorithm, medium precision) using multiple alignments of
 4-fold degenerate sites extracted from the 60-way alignment
 (msa_view).  The 4d sites were derived from the RefSeq (Reviewed+Coding) gene
 set, filtered to select single-coverage long transcripts.  The
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phastCons60way/mm10.60way.phastCons.glire.mod"
 TARGET=_blank >Glires</A>,
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phastCons60way/mm10.60way.phastCons.euarchontoglire.mod"
 TARGET=_blank >Euarchontoglires</A> and
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phastCons60way/mm10.60way.phastCons.placental.mod"
 TARGET=_blank >placental mammal</A> subset tree models were extracted from the
 all-species model.
 </P>
 <P>
 These same tree models were used in the phyloP calculations; however, their
 background frequencies were modified to maintain reversibility.
 The resulting tree models:
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phyloP60way/mm10.phyloP.60way.mod"
 TARGET=_blank>all species</A>,
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phyloP60way/mm10.phyloP.glire.mod"
 TARGET=_blank >Glires</A>,
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phyloP60way/mm10.phyloP.euarchontoglire.mod"
 TARGET=_blank >Euarchontoglires</A> and
 <A HREF="http://hgdownload.soe.ucsc.edu/goldenPath/mm10/phyloP60way/mm10.phyloP.placental.mod"
 TARGET=_blank >placental mammal</A>.
 </P>
 <h3> PhastCons Conservation </h3>
 <P>
 The phastCons program computes conservation scores based on a phylo-HMM, a
 type of probabilistic model that describes both the process of DNA
 substitution at each site in a genome and the way this process changes from
 one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and
 Haussler 2005).  PhastCons uses a two-state phylo-HMM, with a state for
 conserved regions and a state for non-conserved regions.  The value plotted
 at each site is the posterior probability that the corresponding alignment
 column was "generated" by the conserved state of the phylo-HMM.  These
 scores reflect the phylogeny (including branch lengths) of the species in
 question, a continuous-time Markov model of the nucleotide substitution
 process, and a tendency for conservation levels to be autocorrelated along
 the genome (i.e., to be similar at adjacent sites).  The general reversible
 (REV) substitution model was used.  Unlike many conservation-scoring programs,
 phastCons does not rely on a sliding window
 of fixed size; therefore, short highly-conserved regions and long moderately
 conserved regions can both obtain high scores.
 More information about
 phastCons can be found in Siepel <EM>et al</EM>. 2005.</P>
 <P>
 The phastCons parameters used were: expected-length=45,
 target-coverage=0.3, rho=0.3.</P>
 
 <h3> PhyloP Conservation </h3>
 <P>
 The phyloP program supports several different methods for computing
 p-values of conservation or acceleration, for individual nucleotides or
 larger elements (<a href="http://compgen.cshl.edu/phast/" target="_blank">
 http://compgen.cshl.edu/phast/</a>).  Here it was used
 to produce separate scores at each base (--wig-scores option), considering
 all branches of the phylogeny rather than a particular subtree or lineage
 (i.e., the --subtree option was not used).  The scores were computed by
 performing a likelihood ratio test at each alignment column (--method LRT),
 and scores for both conservation and acceleration were produced (--mode
 CONACC).
 </P>
 <h3> Conserved Elements </h3>
 <P>
 The conserved elements were predicted by running phastCons with the
 --viterbi option.  The predicted elements are segments of the alignment
 that are likely to have been "generated" by the conserved state of the
 phylo-HMM. Each element is assigned a log-odds score equal to its log
 probability under the conserved model minus its log probability under the
 non-conserved model. The "score" field associated with this track contains
 transformed log-odds scores, taking values between 0 and 1000. (The scores
 are transformed using a monotonic function of the form a * log(x) + b.) The
 raw log odds scores are retained in the "name" field and can be seen on the
 details page or in the browser when the track's display mode is set to
 "pack" or "full".
 </P>
 
 <H2>Credits</H2>
 <P> This track was created using the following programs:
 <UL>
 <LI> Alignment tools: lastz (formerly blastz) and multiz by Minmei Hou, Scott Schwartz and Webb
 Miller of the <A HREF="http://www.bx.psu.edu/miller_lab/"
 TARGET=_blank>Penn State Bioinformatics Group</A>
 <LI> Chaining and Netting:  axtChain, chainNet by Jim Kent at UCSC
 <LI> Conservation scoring: phastCons, phyloP, phyloFit, tree_doctor, msa_view and
 other programs in PHAST by
 <A HREF="https://siepellab.labsites.cshl.edu/"
 TARGET=_blank>Adam Siepel</A> at Cold Spring Harbor Laboratory (original development
 done at the Haussler lab at UCSC).
 <LI> MAF Annotation tools: mafAddIRows by Brian Raney, UCSC; mafAddQRows
 by Richard Burhans, Penn State; genePredToMafFrames by Mark Diekhans, UCSC
 <LI> Tree image generator: phyloPng by Galt Barber, UCSC
 <LI> Conservation track display: Kate Rosenbloom, Hiram Clawson (wiggle
 display), and Brian Raney (gap annotation and codon framing) at UCSC
 </UL>
 </P>
 <P>The phylogenetic tree is based on Murphy <EM>et al</EM>. (2001) and general
 consensus in the vertebrate phylogeny community.  Thanks to Giacomo Bernardi for
 help with the fish relationships.
 </P>
 
 <H2>References</H2>
 
 <H3>Phylo-HMMs, phastCons, and phyloP:</H3>
 <p>
 Felsenstein J, Churchill GA.
 <a href="https://academic.oup.com/mbe/article/13/1/93/1055515/A-Hidden-Markov-Model-approach-to-
 variation-among" target="_blank">A Hidden Markov Model approach to
 variation among sites in rate of evolution</a>.
 <em>Mol Biol Evol</em>. 1996 Jan;13(1):93-104.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/8583911" target="_blank">8583911</a>
 </p>
 
 <p>
 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A.
 <a href="https://genome.cshlp.org/content/20/1/110.long" target="_blank">
 Detection of nonneutral substitution rates on mammalian phylogenies</a>.
 <em>Genome Res</em>. 2010 Jan;20(1):110-21.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/19858363" target="_blank">19858363</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798823/" target="_blank">PMC2798823</a>
 </p>
 
 <p>
 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
 Clawson H, Spieth J, Hillier LW, Richards S, <em>et al.</em>
 <a href="https://genome.cshlp.org/content/15/8/1034"
 target="_blank">Evolutionarily conserved elements in vertebrate, insect, worm,
 and yeast genomes</a>.
 <em>Genome Res</em>. 2005 Aug;15(8):1034-50.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/16024819" target="_blank">16024819</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182216/" target="_blank">PMC1182216</a>
 </p>
 
 <p>
 Siepel A, Haussler D.
 <a href="http://compgen.cshl.edu/~acs/phylohmm.pdf"
 target="_blank">Phylogenetic Hidden Markov Models</a>.
 In: Nielsen R, editor. Statistical Methods in Molecular Evolution.
 New York: Springer; 2005. pp. 325-351.
 </p>
 
 <p>
 Yang Z.
 <a href="https://www.genetics.org/content/139/2/993"
 target="_blank">A space-time process model for the evolution of DNA
 sequences</a>.
 <em>Genetics</em>. 1995 Feb;139(2):993-1005.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/7713447" target="_blank">7713447</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1206396/" target="_blank">PMC1206396</a>
 </p>
 
 <H3>Chain/Net:</H3>
 <p>
 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D.
 <a href="https://www.pnas.org/content/100/20/11484"
 target="_blank">Evolution's cauldron:
 duplication, deletion, and rearrangement in the mouse and human genomes</a>.
 <em>Proc Natl Acad Sci U S A</em>. 2003 Sep 30;100(20):11484-9.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/14500911" target="_blank">14500911</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC208784/" target="_blank">PMC208784</a>
 </p>
 
 <H3>Multiz:</H3>
 <p>
 Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM,
 Baertsch R, Rosenbloom K, Clawson H, Green ED, <em>et al.</em>
 <a href="https://genome.cshlp.org/content/14/4/708.abstract"
 target="_blank">Aligning multiple genomic sequences with the threaded blockset aligner</a>.
 <em>Genome Res</em>. 2004 Apr;14(4):708-15.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/15060014" target="_blank">15060014</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383317/" target="_blank">PMC383317</a>
 </p>
 
 <H3>Lastz (formerly Blastz):</H3>
 <p>
 Chiaromonte F, Yap VB, Miller W.
 <a href="http://psb.stanford.edu/psb-online/proceedings/psb02/chiaromonte.pdf"
 target="_blank">Scoring pairwise genomic sequence alignments</a>.
 <em>Pac Symp Biocomput</em>. 2002:115-26.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/11928468" target="_blank">11928468</a>
 </p>
 
 <p>
 Harris RS.
 <a href="http://www.bx.psu.edu/~rsharris/rsharris_phd_thesis_2007.pdf"
 target="_blank">Improved pairwise alignment of genomic DNA</a>.
 <em>Ph.D. Thesis</em>. Pennsylvania State University, USA. 2007.
 </p>
 
 <p>
 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
 Haussler D, Miller W.
 <a href="https://genome.cshlp.org/content/13/1/103.abstract"
 target="_blank">Human-mouse alignments with BLASTZ</a>.
 <em>Genome Res</em>. 2003 Jan;13(1):103-7.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/12529312" target="_blank">12529312</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC430961/" target="_blank">PMC430961</a>
 </p>
 
 <H3>Phylogenetic Tree:</H3>
 <p>
 Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E,
 Ryder OA, Stanhope MJ, de Jong WW, Springer MS.
 <a href="https://science.sciencemag.org/content/294/5550/2348"
 target="_blank">Resolution of the early placental mammal radiation using Bayesian phylogenetics</a>.
 <em>Science</em>. 2001 Dec 14;294(5550):2348-51.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/11743200" target="_blank">11743200</a>
 </p>