7a820a27de93e79180f99ae0e149585b5d1bb126
mspeir
  Tue Dec 23 16:02:10 2025 -0800
adding better species coloring description to rest of conservation tracks, refs #27217

diff --git src/hg/makeDb/trackDb/worm/ce11/cons135way.html src/hg/makeDb/trackDb/worm/ce11/cons135way.html
index 1633549330d..e9a2497f059 100644
--- src/hg/makeDb/trackDb/worm/ce11/cons135way.html
+++ src/hg/makeDb/trackDb/worm/ce11/cons135way.html
@@ -1,1136 +1,1138 @@
 <h2>Description</h2>
 <p>
 This track shows multiple alignments of 135 species: 112 nematodes,
 22 flatworms and one Ciona intestinalis sequence and measurements of
 evolutionary conservation using
 two methods (<em>phastCons</em> and <em>phyloP</em>) from the
 <a href="http://compgen.cshl.edu/phast/" target=_BLANK>
 PHAST package</a>, for all 135 species.
 The multiple alignments were generated using multiz and
 other tools in the UCSC/<a href="http://www.bx.psu.edu/miller_lab/"
 target="_blank">Penn State Bioinformatics</a>
 comparative genomics alignment pipeline.
 Conserved elements identified by phastCons are also displayed in
 this track.
 </p>
 <p>
 The phylogenetic tree was derived from kmers in common counting
 between the sequences to obtain a 'distance' matrix, then using the
 phylip command 'neighbors' operation for the simple neighbor joining
 algorithm to establish this binary tree.  This tree is not necessarily
 biologically correct, but it does serve as a useful guide tree for the
 multiz alignment procedure.  See also:
 <a href="https://evolution.genetics.washington.edu/phylip/progs.data.dist.html"
 target="_blank">Phylip distance operations</a>, 
 <a href="https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1647-5"
 target="_blank">assembly and alignment-free phylogeny reconstruction</a>, and 
 <a href="https://f1000research.com/articles/5-2789/v2"
 target="_blank">recapitulating phylogenies using k-mers</a>.
 </p>
 <p>
 PhastCons (which has been used in previous Conservation tracks) is a hidden
 Markov model-based method that estimates the probability that each
 nucleotide belongs to a conserved element, based on the multiple alignment.
 It considers not just each individual alignment column, but also its
 flanking columns.  By contrast, phyloP separately measures conservation at
 individual columns, ignoring the effects of their neighbors.  As a
 consequence, the phyloP plots have a less smooth appearance than the
 phastCons plots, with more &quot;texture&quot; at individual sites.  The two methods
 have different strengths and weaknesses.  PhastCons is sensitive to &quot;runs&quot;
 of conserved sites, and is therefore effective for picking out conserved
 elements.  PhyloP, on the other hand, is more appropriate for evaluating
 signatures of selection at particular nucleotides or classes of nucleotides
 (e.g., third codon positions, or first positions of miRNA target sites).
 </p>
 <p>
 Another important difference is that phyloP can measure acceleration
 (faster evolution than expected under neutral drift) as well as
 conservation (slower than expected evolution).  In the phyloP plots, sites
 predicted to be conserved are assigned positive scores (and shown in blue),
 while sites predicted to be fast-evolving are assigned negative scores (and
 shown in red).  The absolute values of the scores represent -log p-values
 under a null hypothesis of neutral evolution.  The phastCons scores, by
 contrast, represent probabilities of negative selection and range between 0
 and 1.
 </p>
 <p>
 Both phastCons and phyloP treat alignment gaps and unaligned nucleotides as
 missing data.
 </p>
 <p>
 See also: <a href="http://genomewiki.ucsc.edu/index.php/Ce11_135-way_conservation_lastz_parameters"
 target="_blank">lastz parameters</a> and other details, and
 chain <a href="http://genomewiki.ucsc.edu/index.php/Ce11_135-way_Genome_size_statistics"
 target="_blank">minimum score and gap</a> parameters used in these alignments.
 </p>
 
 
 <p>
 Missing sequence in the assemblies is highlighted in the track display
 by regions of yellow when zoomed out and Ns displayed at base
 level (see <em>Gap Annotation</em>, below). </p>
 <p>
 <blockquote><table border=1 cellpadding=4 bordercolor='#aaaaaa'>
 <tr><th>Organism</th><th>Species</th><th>Assembly name</th><th>browser or<br>NCBI source</th><th>alignment type</th></tr>
 <tr align=left><td>C. elegans</td><td>Caenorhabditis elegans</td>
     <td>Feb. 2013 (WBcel235/ce11)</td>
     <td><a href="../cgi-bin/hgTracks?db=ce11"
     target="_blank">Feb. 2013 (WBcel235/ce11)</a></td>
     <td>reference</td></tr>
 <tr align=left><td>A. ceylanicum</td><td>Ancylostoma ceylanicum</td>
     <td>Mar. 2014 (WS243/Acey_2013.11.30.genDNA/ancCey1)</td>
     <td><a href="../cgi-bin/hgTracks?db=ancCey1"
     target="_blank">Mar. 2014 (WS243/Acey_2013.11.30.genDNA/ancCey1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Acrobeloides_nanus</td><td>Acrobeloides nanus</td>
     <td>Jun. 2018 (v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/406/225/GCA_900406225.1_v1/"
     target="_blank">GCA_900406225.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Ancylostoma_caninum</td><td>Ancylostoma caninum</td>
     <td>Jul. 2018 (A_caninum_9.3.2.ec.cg.pg)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/336/725/GCA_003336725.1_A_caninum_9.3.2.ec.cg.pg/"
     target="_blank">GCA_003336725.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Ancylostoma_duodenale</td><td>Ancylostoma duodenale</td>
     <td>Jan. 2015 (A_duodenale_2.2.ec.cg.pg)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/816/745/GCA_000816745.1_A_duodenale_2.2.ec.cg.pg/"
     target="_blank">GCA_000816745.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Angiostrongylus_cantonensis</td><td>Angiostrongylus cantonensis</td>
     <td>Nov. 2016 (ASM188428v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/884/285/GCA_001884285.1_ASM188428v1/"
     target="_blank">GCA_001884285.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Ascaris_suum</td><td>Ascaris suum</td>
     <td>Nov. 2017 (ASM18702v3)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/187/025/GCA_000187025.3_ASM18702v3/"
     target="_blank">GCA_000187025.3</a></td>
     <td>net</td></tr>
 <tr align=left><td>Barber pole worm</td><td>Haemonchus contortus</td>
     <td>Jul. 2013 (WormBase WS239/haeCon2)</td>
     <td><a href="../cgi-bin/hgTracks?db=haeCon2"
     target="_blank">Jul. 2013 (WormBase WS239/haeCon2)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Brugia_malayi</td><td>Brugia malayi</td>
     <td>Mar. 2008 (ASM299v2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/995/GCF_000002995.3_ASM299v2/"
     target="_blank">GCF_000002995.3</a></td>
     <td>net</td></tr>
 <tr align=left><td>Brugia_pahangi</td><td>Brugia pahangi</td>
     <td>Sep. 2015 (Brugia_pa_1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/280/985/GCA_001280985.1_Brugia_pa_1.0/"
     target="_blank">GCA_001280985.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Bursaphelenchus_xylophilus</td><td>Bursaphelenchus xylophilus</td>
     <td>Oct. 2011 (ASM23113v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/231/135/GCA_000231135.1_ASM23113v1/"
     target="_blank">GCA_000231135.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. angaria</td><td>Caenorhabditis angaria</td>
     <td>Apr. 2012 (WS232/ps1010rel8/caeAng2)</td>
     <td><a href="../cgi-bin/hgTracks?db=caeAng2"
     target="_blank">Apr. 2012 (WS232/ps1010rel8/caeAng2)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. brenneri</td><td>Caenorhabditis brenneri</td>
     <td>Nov. 2010 (C. brenneri 6.0.1b/caePb3)</td>
     <td><a href="../cgi-bin/hgTracks?db=caePb3"
     target="_blank">Nov. 2010 (C. brenneri 6.0.1b/caePb3)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. briggsae</td><td>Caenorhabditis briggsae</td>
     <td>Apr. 2011 (WS225/cb4)</td>
     <td><a href="../cgi-bin/hgTracks?db=cb4"
     target="_blank">Apr. 2011 (WS225/cb4)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. intestinalis</td><td>Ciona intestinalis</td>
     <td>Apr. 2011 (Kyoto KH/ci3)</td>
     <td><a href="../cgi-bin/hgTracks?db=ci3"
     target="_blank">Apr. 2011 (Kyoto KH/ci3)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. japonica</td><td>Caenorhabditis japonica</td>
     <td>Aug. 2010 (WUSTL 7.0.1/caeJap4)</td>
     <td><a href="../cgi-bin/hgTracks?db=caeJap4"
     target="_blank">Aug. 2010 (WUSTL 7.0.1/caeJap4)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. remanei</td><td>Caenorhabditis remanei</td>
     <td>Jul. 2007 (WS220/caeRem4)</td>
     <td><a href="../cgi-bin/hgTracks?db=caeRem4"
     target="_blank">Jul. 2007 (WS220/caeRem4)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. sp. 5 ju800</td><td>Caenorhabditis sp5 ju800</td>
     <td>Jan. 2012 (WS230/Caenorhabditis_sp_5-JU800-1.0/caeSp51)</td>
     <td><a href="../cgi-bin/hgTracks?db=caeSp51"
     target="_blank">Jan. 2012 (WS230/Caenorhabditis_sp_5-JU800-1.0/caeSp51)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C. tropicalis</td><td>Caenorhabditis tropicalis</td>
     <td>Nov. 2010 (WS226/WUSTL 3.0.1/caeSp111)</td>
     <td><a href="../cgi-bin/hgTracks?db=caeSp111"
     target="_blank">Nov. 2010 (WS226/WUSTL 3.0.1/caeSp111)</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_briggsae</td><td>Caenorhabditis briggsae</td>
     <td>Jul. 2014 (CB4)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/004/555/GCA_000004555.3_CB4/"
     target="_blank">GCA_000004555.3</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_latens</td><td>Caenorhabditis latens</td>
     <td>Aug. 2017 (CaeLat1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/259/235/GCA_002259235.1_CaeLat1.0/"
     target="_blank">GCA_002259235.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_nigoni</td><td>Caenorhabditis nigoni</td>
     <td>Nov. 2017 (nigoni.pc_2016.07.14)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/742/825/GCA_002742825.1_nigoni.pc_2016.07.14/"
     target="_blank">GCA_002742825.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp21_LS_2015</td><td>Caenorhabditis sp. 21 LS-2015</td>
     <td>Aug. 2018 (CPARV_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/235/GCA_900536235.1_CPARV_v1/"
     target="_blank">GCA_900536235.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp26_LS_2015</td><td>Caenorhabditis sp. 26 LS-2015</td>
     <td>Aug. 2018 (CZANZ_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/285/GCA_900536285.1_CZANZ_v1/"
     target="_blank">GCA_900536285.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp31_LS_2015</td><td>Caenorhabditis sp. 31 LS-2015</td>
     <td>Aug. 2018 (CUTEL_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/295/GCA_900536295.1_CUTEL_v1/"
     target="_blank">GCA_900536295.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp32_LS_2015</td><td>Caenorhabditis sp. 32 LS-2015</td>
     <td>Aug. 2018 (CSULS_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/325/GCA_900536325.1_CSULS_v1/"
     target="_blank">GCA_900536325.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp34_TK_2017</td><td>Caenorhabditis sp. 34 TK-2017</td>
     <td>Jun. 2017 (Sp34_v7)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/052/745/GCA_003052745.1_Sp34_v7/"
     target="_blank">GCA_003052745.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp38_MB_2015</td><td>Caenorhabditis sp. 38 MB-2015</td>
     <td>Aug. 2018 (CQUIO_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/415/GCA_900536415.1_CQUIO_v1/"
     target="_blank">GCA_900536415.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp39_LS_2015</td><td>Caenorhabditis sp. 39 LS-2015</td>
     <td>Aug. 2018 (CWAIT_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/345/GCA_900536345.1_CWAIT_v1/"
     target="_blank">GCA_900536345.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>C_sp40_LS_2015</td><td>Caenorhabditis sp. 40 LS-2015</td>
     <td>Aug. 2018 (CTRIB_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/536/305/GCA_900536305.1_CTRIB_v1/"
     target="_blank">GCA_900536305.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Clonorchis_sinensis</td><td>Clonorchis sinensis</td>
     <td>Nov. 2011 (C_sinensis-2.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/236/345/GCA_000236345.1_C_sinensis-2.0/"
     target="_blank">GCA_000236345.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Dicrocoelium_dendriticum</td><td>Dicrocoelium dendriticum</td>
     <td>Sep. 2014 (D_dendriticum_Leon_v1_0_4)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/950/715/GCA_000950715.1_D_dendriticum_Leon_v1_0_4/"
     target="_blank">GCA_000950715.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Dictyocaulus_viviparus</td><td>Dictyocaulus viviparus</td>
     <td>Mar. 2015 (D_viviparus_9.2.1.ec.pg)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/816/705/GCA_000816705.1_D_viviparus_9.2.1.ec.pg/"
     target="_blank">GCA_000816705.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Diploscapter_coronatus</td><td>Diploscapter coronatus</td>
     <td>Jun. 2017 (ASM220778v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/207/785/GCA_002207785.1_ASM220778v1/"
     target="_blank">GCA_002207785.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Diploscapter_pachys</td><td>Diploscapter pachys</td>
     <td>Sep. 2017 (DipSp1Ass11Ann3)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/287/525/GCA_002287525.1_DipSp1Ass11Ann3/"
     target="_blank">GCA_002287525.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Dirofilaria_immitis</td><td>Dirofilaria immitis</td>
     <td>Aug. 2013 (ASM107739v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/077/395/GCA_001077395.1_ASM107739v1/"
     target="_blank">GCA_001077395.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Ditylenchus_destructor</td><td>Ditylenchus destructor</td>
     <td>Mar. 2016 (ASM157970v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/579/705/GCA_001579705.1_ASM157970v1/"
     target="_blank">GCA_001579705.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Dog heartworm</td><td>Dirofilaria immitis</td>
     <td>Sep. 2013 (WS240/D. immitis v2.2/dirImm1)</td>
     <td><a href="../cgi-bin/hgTracks?db=dirImm1"
     target="_blank">Sep. 2013 (WS240/D. immitis v2.2/dirImm1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Dugesia_japonica</td><td>Dugesia japonica</td>
     <td>Jan. 2017 (Djap_assembly_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/938/525/GCA_001938525.1_Djap_assembly_v1/"
     target="_blank">GCA_001938525.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Echinococcus_canadensis</td><td>Echinococcus canadensis</td>
     <td>May 2016 (ECANG7)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/004/735/GCA_900004735.1_ECANG7/"
     target="_blank">GCA_900004735.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Echinococcus_granulosus</td><td>Echinococcus granulosus</td>
     <td>Jan. 2014 (ASM52419v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/524/195/GCA_000524195.1_ASM52419v1/"
     target="_blank">GCA_000524195.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Echinococcus_multilocularis</td><td>Echinococcus multilocularis</td>
     <td>Dec. 2015 (EMULTI002)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/469/725/GCA_000469725.3_EMULTI002/"
     target="_blank">GCA_000469725.3</a></td>
     <td>net</td></tr>
 <tr align=left><td>Elaeophora_elaphi</td><td>Elaeophora elaphi</td>
     <td>Nov. 2013 (EEL001)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/499/685/GCA_000499685.1_EEL001/"
     target="_blank">GCA_000499685.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Eye worm</td><td>Loa loa</td>
     <td>Jul. 2012 (WS235/L_loa_Cameroon_isolate/loaLoa1)</td>
     <td><a href="../cgi-bin/hgTracks?db=loaLoa1"
     target="_blank">Jul. 2012 (WS235/L_loa_Cameroon_isolate/loaLoa1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Fasciola_gigantica</td><td>Fasciola gigantica</td>
     <td>Jan. 2018 (ASM286751v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/867/515/GCA_002867515.1_ASM286751v1/"
     target="_blank">GCA_002867515.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Fasciola_hepatica</td><td>Fasciola hepatica</td>
     <td>Apr. 2018 (Fasciola_10x_pilon)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/302/435/GCA_900302435.1_Fasciola_10x_pilon/"
     target="_blank">GCA_900302435.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Filarial worm</td><td>Brugia malayi</td>
     <td>May. 2014 (WS244/B_malayi-3.1/bruMal2)</td>
     <td><a href="../cgi-bin/hgTracks?db=bruMal2"
     target="_blank">May. 2014 (WS244/B_malayi-3.1/bruMal2)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Girardia_tigrina</td><td>Girardia tigrina</td>
     <td>Jan. 2017 (gtig.1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/938/485/GCA_001938485.1_gtig.1/"
     target="_blank">GCA_001938485.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Globodera_ellingtonae</td><td>Globodera ellingtonae</td>
     <td>Sep. 2016 (ASM172322v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/723/225/GCA_001723225.1_ASM172322v1/"
     target="_blank">GCA_001723225.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Globodera_pallida</td><td>Globodera pallida</td>
     <td>May 2014 (GPAL001)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/724/045/GCA_000724045.1_GPAL001/"
     target="_blank">GCA_000724045.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Globodera_rostochiensis</td><td>Globodera rostochiensis</td>
     <td>Apr. 2016 (nGr)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/079/975/GCA_900079975.1_nGr/"
     target="_blank">GCA_900079975.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Gyrodactylus_salaris</td><td>Gyrodactylus salaris</td>
     <td>Jun. 2014 (Gsalaris_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/715/275/GCA_000715275.1_Gsalaris_v1/"
     target="_blank">GCA_000715275.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>H. bacteriophora/m31e</td><td>Heterorhabditis bacteriophora</td>
     <td>Aug. 2011 (WS229/H. bacteriophora 7.0/hetBac1)</td>
     <td><a href="../cgi-bin/hgTracks?db=hetBac1"
     target="_blank">Aug. 2011 (WS229/H. bacteriophora 7.0/hetBac1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Haemonchus_contortus</td><td>Haemonchus contortus</td>
     <td>Aug. 2013 (HCON)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/469/685/GCA_000469685.1_HCON/"
     target="_blank">GCA_000469685.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Heligmosomoides_polygyrus_bakeri</td><td>Heligmosomoides polygyrus bakeri</td>
     <td>Sep. 2016 (nHp_v2.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/096/555/GCA_900096555.1_nHp_v2.0/"
     target="_blank">GCA_900096555.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Heterodera_glycines</td><td>Heterodera glycines</td>
     <td>Apr. 2008 (HG2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/150/805/GCA_000150805.1_HG2/"
     target="_blank">GCA_000150805.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Hymenolepis_microstoma</td><td>Hymenolepis microstoma</td>
     <td>Dec. 2015 (HMIC002)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/469/805/GCA_000469805.2_HMIC002/"
     target="_blank">GCA_000469805.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Loa_loa</td><td>Loa loa</td>
     <td>Jul. 2012 (Loa_loa_V3.1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/183/805/GCF_000183805.2_Loa_loa_V3.1/"
     target="_blank">GCF_000183805.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>M. hapla</td><td>Meloidogyne hapla</td>
     <td>Sep. 2008 (M. hapla VW9 WS210/melHap1)</td>
     <td><a href="../cgi-bin/hgTracks?db=melHap1"
     target="_blank">Sep. 2008 (M. hapla VW9 WS210/melHap1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>M. incognita</td><td>Meloidogyne incognita</td>
     <td>Feb. 2008 (M. incognita WS245/PRJEA28837/melInc2)</td>
     <td><a href="../cgi-bin/hgTracks?db=melInc2"
     target="_blank">Feb. 2008 (M. incognita WS245/PRJEA28837/melInc2)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Macrostomum_lignano</td><td>Macrostomum lignano</td>
     <td>Aug. 2017 (Mlig_3_7)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/269/645/GCA_002269645.1_Mlig_3_7/"
     target="_blank">GCA_002269645.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Meloidogyne_arenaria</td><td>Meloidogyne arenaria</td>
     <td>May 2018 (ASM313380v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/133/805/GCA_003133805.1_ASM313380v1/"
     target="_blank">GCA_003133805.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Meloidogyne_floridensis</td><td>Meloidogyne floridensis</td>
     <td>Jun. 2014 (nMf_1_1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/751/915/GCA_000751915.1_nMf_1_1/"
     target="_blank">GCA_000751915.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Meloidogyne_graminicola</td><td>Meloidogyne graminicola</td>
     <td>Nov. 2017 (Mgraminicola_V1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/778/205/GCA_002778205.1_Mgraminicola_V1/"
     target="_blank">GCA_002778205.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Meloidogyne_incognita</td><td>Meloidogyne incognita</td>
     <td>May 2017 (Meloidogyne_incognita_V3)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/182/535/GCA_900182535.1_Meloidogyne_incognita_V3/"
     target="_blank">GCA_900182535.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Meloidogyne_javanica</td><td>Meloidogyne javanica</td>
     <td>Apr. 2017 (ASM90000394v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/003/945/GCA_900003945.1_ASM90000394v1/"
     target="_blank">GCA_900003945.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Microworm</td><td>Panagrellus redivivus</td>
     <td>Feb. 2013 (WS240/Pred3/panRed1)</td>
     <td><a href="../cgi-bin/hgTracks?db=panRed1"
     target="_blank">Feb. 2013 (WS240/Pred3/panRed1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>N. americanus</td><td>Necator americanus</td>
     <td>Dec. 2013 (WS242/N_americanus_v1/necAme1)</td>
     <td><a href="../cgi-bin/hgTracks?db=necAme1"
     target="_blank">Dec. 2013 (WS242/N_americanus_v1/necAme1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Necator_americanus</td><td>Necator americanus</td>
     <td>Dec. 2013 (N_americanus_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/507/365/GCF_000507365.1_N_americanus_v1/"
     target="_blank">GCF_000507365.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Nippostrongylus_brasiliensis</td><td>Nippostrongylus brasiliensis</td>
     <td>Aug. 2017 (NbL5_MIMR_Canu1.5)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/200/055/GCA_900200055.1_NbL5_MIMR_Canu1.5/"
     target="_blank">GCA_900200055.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>O. volvulus</td><td>Onchocerca volvulus</td>
     <td>Nov. 2013 (WS241/O_volvulus_Cameroon_v3/oncVol1)</td>
     <td><a href="../cgi-bin/hgTracks?db=oncVol1"
     target="_blank">Nov. 2013 (WS241/O_volvulus_Cameroon_v3/oncVol1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Oesophagostomum_dentatum</td><td>Oesophagostomum dentatum</td>
     <td>Dec. 2014 (O_dentatum_10.0.ec.cg.pg)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/797/555/GCA_000797555.1_O_dentatum_10.0.ec.cg.pg/"
     target="_blank">GCA_000797555.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Onchocerca_flexuosa</td><td>Onchocerca flexuosa</td>
     <td>Aug. 2017 (O_flexuosa_1.0.allpaths.pg.lrna)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/249/935/GCA_002249935.1_O_flexuosa_1.0.allpaths.pg.lrna/"
     target="_blank">GCA_002249935.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Onchocerca_ochengi</td><td>Onchocerca ochengi</td>
     <td>Mar. 2016 (O_ochengi_Ngaoundere)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/950/515/GCA_000950515.2_O_ochengi_Ngaoundere/"
     target="_blank">GCA_000950515.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Onchocerca_volvulus</td><td>Onchocerca volvulus</td>
     <td>Feb. 2014 (ASM49940v2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/499/405/GCA_000499405.2_ASM49940v2/"
     target="_blank">GCA_000499405.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Opisthorchis_viverrini</td><td>Opisthorchis viverrini</td>
     <td>Jul. 2014 (OpiViv1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/715/545/GCA_000715545.1_OpiViv1.0/"
     target="_blank">GCA_000715545.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Oscheius_MCB</td><td>Oscheius sp. MCB</td>
     <td>Feb. 2015 (ASM93487v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/934/875/GCA_000934875.1_ASM93487v1/"
     target="_blank">GCA_000934875.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Oscheius_TEL_2014</td><td>Oscheius sp. TEL-2014</td>
     <td>Jan. 2016 (ASM151353v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/513/535/GCA_001513535.1_ASM151353v1/"
     target="_blank">GCA_001513535.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Oscheius_tipulae</td><td>Oscheius tipulae</td>
     <td>May 2017 (Oscheius_tipulae_assembly_v2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/184/235/GCA_900184235.1_Oscheius_tipulae_assembly_v2/"
     target="_blank">GCA_900184235.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>P. exspectatus</td><td>Pristionchus exspectatus</td>
     <td>Mar. 2014 (WS243/P_exspectatus_v1/priExs1)</td>
     <td><a href="../cgi-bin/hgTracks?db=priExs1"
     target="_blank">Mar. 2014 (WS243/P_exspectatus_v1/priExs1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>P. pacificus</td><td>Pristionchus pacificus</td>
     <td>Aug. 2014 (WS221/P_pacificus-v2/priPac3)</td>
     <td><a href="../cgi-bin/hgTracks?db=priPac3"
     target="_blank">Aug. 2014 (WS221/P_pacificus-v2/priPac3)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Parapristionchus_giblindavisi</td><td>Parapristionchus giblindavisi</td>
     <td>Jun. 2018 (Parapristionchus_genome)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/491/355/GCA_900491355.1_Parapristionchus_genome/"
     target="_blank">GCA_900491355.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Parascaris_univalens</td><td>Parascaris univalens</td>
     <td>Aug. 2017 (ASM225921v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/259/215/GCA_002259215.1_ASM225921v1/"
     target="_blank">GCA_002259215.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Parastrongyloides_trichosuri</td><td>Parastrongyloides trichosuri</td>
     <td>Sep. 2014 (P_trichosuri_KNP)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/941/615/GCA_000941615.1_P_trichosuri_KNP/"
     target="_blank">GCA_000941615.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pig roundworm</td><td>Ascaris suum</td>
     <td>Sep. 2012 (WS229/AscSuum_1.0/ascSuu1)</td>
     <td><a href="../cgi-bin/hgTracks?db=ascSuu1"
     target="_blank">Sep. 2012 (WS229/AscSuum_1.0/ascSuu1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pine wood nematode</td><td>Bursaphelenchus xylophilus</td>
     <td>Nov. 2011 (WS229/B. xylophilus Ka4C1/burXyl1)</td>
     <td><a href="../cgi-bin/hgTracks?db=burXyl1"
     target="_blank">Nov. 2011 (WS229/B. xylophilus Ka4C1/burXyl1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Plectus_sambesii</td><td>Plectus sambesii</td>
     <td>Nov. 2017 (Psam_v1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/796/945/GCA_002796945.1_Psam_v1.0/"
     target="_blank">GCA_002796945.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pristionchus_arcanus</td><td>Pristionchus arcanus</td>
     <td>Jun. 2018 (P._arcanus_genome)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/490/705/GCA_900490705.1_P._arcanus_genome/"
     target="_blank">GCA_900490705.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pristionchus_entomophagus</td><td>Pristionchus entomophagus</td>
     <td>Jun. 2018 (P._entomophagus_genome)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/490/825/GCA_900490825.1_P._entomophagus_genome/"
     target="_blank">GCA_900490825.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pristionchus_exspectatus</td><td>Pristionchus exspectatus</td>
     <td>May 2018 (Pristionchus_exspectatus_de_novo_assembly)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/380/275/GCA_900380275.1_Pristionchus_exspectatus_de_novo_assembly/"
     target="_blank">GCA_900380275.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pristionchus_maxplancki</td><td>Pristionchus maxplancki</td>
     <td>Jun. 2018 (Prisstionchus_maxplancki_genome)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/490/775/GCA_900490775.1_Prisstionchus_maxplancki_genome/"
     target="_blank">GCA_900490775.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Pristionchus_pacificus</td><td>Pristionchus pacificus</td>
     <td>Oct. 2017 (El_Paco)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/180/635/GCA_000180635.3_El_Paco/"
     target="_blank">GCA_000180635.3</a></td>
     <td>net</td></tr>
 <tr align=left><td>Rhabditophanes_KR3021</td><td>Rhabditophanes sp. KR3021</td>
     <td>Sep. 2014 (Rhabditophanes_sp_KR3021)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/944/355/GCA_000944355.1_Rhabditophanes_sp_KR3021/"
     target="_blank">GCA_000944355.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Romanomermis_culicivorax</td><td>Romanomermis culicivorax</td>
     <td>Jan. 2014 (nRc.2.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/039/655/GCA_001039655.1_nRc.2.0/"
     target="_blank">GCA_001039655.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Rotylenchulus_reniformis</td><td>Rotylenchulus reniformis</td>
     <td>Jun. 2015 (RREN1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/026/735/GCA_001026735.1_RREN1.0/"
     target="_blank">GCA_001026735.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Schistosoma_haematobium</td><td>Schistosoma haematobium</td>
     <td>Jun. 2014 (SchHae_1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/699/445/GCA_000699445.1_SchHae_1.0/"
     target="_blank">GCA_000699445.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Schistosoma_japonicum</td><td>Schistosoma japonicum</td>
     <td>Apr. 2009 (ASM15177v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/151/775/GCA_000151775.1_ASM15177v1/"
     target="_blank">GCA_000151775.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Schistosoma_mansoni</td><td>Schistosoma mansoni</td>
     <td>Dec. 2011 (ASM23792v2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/237/925/GCA_000237925.2_ASM23792v2/"
     target="_blank">GCA_000237925.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Schmidtea_mediterranea</td><td>Schmidtea mediterranea</td>
     <td>Oct. 2017 (ASM260089v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/600/895/GCA_002600895.1_ASM260089v1/"
     target="_blank">GCA_002600895.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Setaria_digitata</td><td>Setaria digitata</td>
     <td>Jan. 2018 (Sdigitata)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/083/525/GCA_900083525.1_Sdigitata/"
     target="_blank">GCA_900083525.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Setaria_equina</td><td>Setaria equina</td>
     <td>Mar. 2018 (Setequ3.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/012/265/GCA_003012265.1_Setequ3.0/"
     target="_blank">GCA_003012265.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Spirometra_erinaceieuropaei</td><td>Spirometra erinaceieuropaei</td>
     <td>Sep. 2014 (S_erinaceieuropaei)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/951/995/GCA_000951995.1_S_erinaceieuropaei/"
     target="_blank">GCA_000951995.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Steinernema_carpocapsae</td><td>Steinernema carpocapsae</td>
     <td>Sep. 2014 (S_carpo_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/757/645/GCA_000757645.1_S_carpo_v1/"
     target="_blank">GCA_000757645.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Steinernema_feltiae</td><td>Steinernema feltiae</td>
     <td>Sep. 2014 (S_felt_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/757/705/GCA_000757705.1_S_felt_v1/"
     target="_blank">GCA_000757705.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Steinernema_glaseri</td><td>Steinernema glaseri</td>
     <td>Sep. 2014 (S_glas_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/757/755/GCA_000757755.1_S_glas_v1/"
     target="_blank">GCA_000757755.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Steinernema_monticolum</td><td>Steinernema monticolum</td>
     <td>Dec. 2013 (S_monti_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/505/645/GCA_000505645.1_S_monti_v1/"
     target="_blank">GCA_000505645.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Steinernema_scapterisci</td><td>Steinernema scapterisci</td>
     <td>Sep. 2014 (S_scapt_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/757/745/GCA_000757745.1_S_scapt_v1/"
     target="_blank">GCA_000757745.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Strongyloides_papillosus</td><td>Strongyloides papillosus</td>
     <td>Nov. 2014 (S_papillosus_LIN)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/936/265/GCA_000936265.1_S_papillosus_LIN/"
     target="_blank">GCA_000936265.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Strongyloides_stercoralis</td><td>Strongyloides stercoralis</td>
     <td>Nov. 2014 (S_stercoralis_PV0001)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/947/215/GCA_000947215.1_S_stercoralis_PV0001/"
     target="_blank">GCA_000947215.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Strongyloides_venezuelensis</td><td>Strongyloides venezuelensis</td>
     <td>Jun. 2015 (S_venezuelensis_HH1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/028/725/GCA_001028725.1_S_venezuelensis_HH1/"
     target="_blank">GCA_001028725.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Subanguina_moxae</td><td>Subanguina moxae</td>
     <td>Apr. 2015 (SAMX_assembly_v0.8)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/981/365/GCA_000981365.1_SAMX_assembly_v0.8/"
     target="_blank">GCA_000981365.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Taenia_asiatica</td><td>Taenia asiatica</td>
     <td>Sep. 2016 (Taenia_asiatica_TASYD01_v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/693/035/GCA_001693035.2_Taenia_asiatica_TASYD01_v1/"
     target="_blank">GCA_001693035.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Taenia_multiceps</td><td>Taenia multiceps</td>
     <td>Jul. 2018 (T_multiceps_v2.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/923/025/GCA_001923025.2_T_multiceps_v2.0/"
     target="_blank">GCA_001923025.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Taenia_saginata</td><td>Taenia saginata</td>
     <td>Oct. 2016 (ASM169307v2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/693/075/GCA_001693075.2_ASM169307v2/"
     target="_blank">GCA_001693075.2</a></td>
     <td>net</td></tr>
 <tr align=left><td>Taenia_solium</td><td>Taenia solium</td>
     <td>Nov. 2016 (MEX_genome_complete.1-6-13)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/870/725/GCA_001870725.1_MEX_genome_complete.1-6-13/"
     target="_blank">GCA_001870725.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Teladorsagia_circumcincta</td><td>Teladorsagia circumcincta</td>
     <td>Sep. 2017 (T_circumcincta.14.0.ec.cg.pg)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/352/805/GCA_002352805.1_T_circumcincta.14.0.ec.cg.pg/"
     target="_blank">GCA_002352805.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Threadworm</td><td>Strongyloides ratti</td>
     <td>Sep. 2014 (S. ratti ED321/strRat2)</td>
     <td><a href="../cgi-bin/hgTracks?db=strRat2"
     target="_blank">Sep. 2014 (S. ratti ED321/strRat2)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Toxocara_canis</td><td>Toxocara canis</td>
     <td>Dec. 2014 (Toxocara_canis_adult_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/803/305/GCA_000803305.1_Toxocara_canis_adult_r1.0/"
     target="_blank">GCA_000803305.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella</td><td>Trichinella spiralis</td>
     <td>Jan. 2011 (WS225/Trichinella_spiralis-3.7.1/triSpi1)</td>
     <td><a href="../cgi-bin/hgTracks?db=triSpi1"
     target="_blank">Jan. 2011 (WS225/Trichinella_spiralis-3.7.1/triSpi1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_T6</td><td>Trichinella sp. T6</td>
     <td>Nov. 2015 (T6_ISS34_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/435/GCA_001447435.1_T6_ISS34_r1.0/"
     target="_blank">GCA_001447435.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_T8</td><td>Trichinella sp. T8</td>
     <td>Nov. 2015 (T8_ISS272_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/745/GCA_001447745.1_T8_ISS272_r1.0/"
     target="_blank">GCA_001447745.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_T9</td><td>Trichinella sp. T9</td>
     <td>Nov. 2015 (T9_ISS409_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/505/GCA_001447505.1_T9_ISS409_r1.0/"
     target="_blank">GCA_001447505.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_britovi</td><td>Trichinella britovi</td>
     <td>Nov. 2015 (T3_ISS120_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/585/GCA_001447585.1_T3_ISS120_r1.0/"
     target="_blank">GCA_001447585.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_murrelli</td><td>Trichinella murrelli</td>
     <td>Jul. 2017 (ASM222148v1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/221/485/GCA_002221485.1_ASM222148v1/"
     target="_blank">GCA_002221485.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_nativa</td><td>Trichinella nativa</td>
     <td>Nov. 2015 (T2_ISS10_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/565/GCA_001447565.1_T2_ISS10_r1.0/"
     target="_blank">GCA_001447565.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_nelsoni</td><td>Trichinella nelsoni</td>
     <td>Nov. 2015 (T7_ISS37_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/455/GCA_001447455.1_T7_ISS37_r1.0/"
     target="_blank">GCA_001447455.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_papuae</td><td>Trichinella papuae</td>
     <td>Nov. 2015 (T10_ISS1980_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/755/GCA_001447755.1_T10_ISS1980_r1.0/"
     target="_blank">GCA_001447755.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_patagoniensis</td><td>Trichinella patagoniensis</td>
     <td>Nov. 2015 (T12_ISS2496_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/655/GCA_001447655.1_T12_ISS2496_r1.0/"
     target="_blank">GCA_001447655.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_pseudospiralis</td><td>Trichinella pseudospiralis</td>
     <td>Nov. 2015 (T4_ISS588_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/725/GCA_001447725.1_T4_ISS588_r1.0/"
     target="_blank">GCA_001447725.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_spiralis</td><td>Trichinella spiralis</td>
     <td>Jan. 2011 (Trichinella_spiralis-3.7.1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/181/795/GCF_000181795.1_Trichinella_spiralis-3.7.1/"
     target="_blank">GCF_000181795.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichinella_zimbabwensis</td><td>Trichinella zimbabwensis</td>
     <td>Nov. 2015 (T11_ISS1029_r1.0)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/447/665/GCA_001447665.1_T11_ISS1029_r1.0/"
     target="_blank">GCA_001447665.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichuris_muris</td><td>Trichuris muris</td>
     <td>Mar. 2014 (TMUE2.2)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/612/645/GCA_000612645.1_TMUE2.2/"
     target="_blank">GCA_000612645.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Trichuris_trichiura</td><td>Trichuris trichiura</td>
     <td>Mar. 2014 (TTRE2.1)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/613/005/GCA_000613005.1_TTRE2.1/"
     target="_blank">GCA_000613005.1</a></td>
     <td>net</td></tr>
 <tr align=left><td>Whipworm</td><td>Trichuris suis</td>
     <td>Jul. 2014 (WS243/T. suis DCEP-RM93M male/triSui1)</td>
     <td><a href="../cgi-bin/hgTracks?db=triSui1"
     target="_blank">Jul. 2014 (WS243/T. suis DCEP-RM93M male/triSui1)</a></td>
     <td>net</td></tr>
 <tr align=left><td>Wuchereria_bancrofti</td><td>Wuchereria bancrofti</td>
     <td>Feb. 2016 (Wb_PNG_Genome_assembly_pt22)</td>
     <td><a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/555/675/GCA_001555675.1_Wb_PNG_Genome_assembly_pt22/"
     target="_blank">GCA_001555675.1</a></td>
     <td>net</td></tr>
 </table><br>
 <b>Table 1.</b> <em>Genome assemblies included in the 135-way Conservation track.</em>
 </blockquote></p>
 
 Downloads for data in this track are available:
 <ul>
 <li>
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/multiz135way/">Multiz alignments</a> (MAF format), and phylogenetic trees
 <li>
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/phyloP135way/">PhyloP conservation</a> (WIG format)
 <li>
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/phastCons135way/">PhastCons conservation</a> (WIG format)
 </ul>
 
 <h2>Display Conventions and Configuration</h2>
 <p>
 The track configuration options allow the user to display the three different
 sets of scores by all, subclass, individually, or any combination of these.
 In full and pack display modes, conservation scores are displayed as a
 <em>wiggle track</em> (histogram) in which the height reflects the
 value of the score.
 The conservation wiggles can be configured in a variety of ways to
 highlight different aspects of the displayed information.
 Click the <a href="../goldenPath/help/hgWiggleTrackHelp.html"
 target="_blank">Graph configuration help</a> link for an explanation
 of the configuration options.</p>
 <p>
 Pairwise alignments of each species to the $organism genome are
 displayed below the conservation histogram as a grayscale density plot (in
 pack mode) or as a wiggle (in full mode) that indicates alignment quality.
 In dense display mode, conservation is shown in grayscale using
 darker values to indicate higher levels of overall conservation
 as scored by phastCons. </p>
 <p>
 Checkboxes on the track configuration page allow selection of the
 species to include in the pairwise display.
+The names of selected species are colored according to their clade,
+alternating between blue and green.
 Configuration buttons are available to select all of the species
 (<em>Set all</em>), deselect all of the species (<em>Clear all</em>), or
 use the default settings (<em>Set defaults</em>).
 Note that excluding species from the pairwise display does not alter the
 the conservation score display.</p>
 <p>
 To view detailed information about the alignments at a specific
 position, zoom the display in to 30,000 or fewer bases, then click on
 the alignment.</p>
 
 <h3>Gap Annotation</h3>
 <p>
 The <em>Display chains between alignments</em> configuration option
 enables display of gaps between alignment blocks in the pairwise alignments in
 a manner similar to the Chain track display.  The following
 conventions are used:
 <ul>
 <li><b>Single line:</b> No bases in the aligned species. Possibly due to a
 lineage-specific insertion between the aligned blocks in the $organism genome
 or a lineage-specific deletion between the aligned blocks in the aligning
 species.
 <li><b>Double line:</b> Aligning species has one or more unalignable bases in
 the gap region. Possibly due to excessive evolutionary distance between
 species or independent indels in the region between the aligned blocks in both
 species.
 <li><b>Pale yellow coloring:</b> Aligning species has Ns in the gap region.
 Reflects uncertainty in the relationship between the DNA of both species, due
 to lack of sequence in relevant portions of the aligning species.
 </ul></p>
 
 <h3>Genomic Breaks</h3>
 <p>
 Discontinuities in the genomic context (chromosome, scaffold or region) of the
 aligned DNA in the aligning species are shown as follows:
 <ul>
 <li>
 <b>Vertical blue bar:</b> Represents a discontinuity that persists indefinitely
 on either side, <em>e.g.</em> a large region of DNA on either side of the bar
 comes from a different chromosome in the aligned species due to a large scale
 rearrangement.
 <li>
 <b>Green square brackets:</b> Enclose shorter alignments consisting of DNA from
 one genomic context in the aligned species nested inside a larger chain of
 alignments from a different genomic context. The alignment within the
 brackets may represent a short misalignment, a lineage-specific insertion of a
 transposon in the $organism genome that aligns to a paralogous copy somewhere
 else in the aligned species, or other similar occurrence.
 </ul></p>
 
 <h3>Base Level</h3>
 <p>
 When zoomed-in to the base-level display, the track shows the base
 composition of each alignment.
 The numbers and symbols on the Gaps
 line indicate the lengths of gaps in the $organism sequence at those
 alignment positions relative to the longest non-$organism sequence.
 If there is sufficient space in the display, the size of the gap is shown.
 If the space is insufficient and the gap size is a multiple of 3, a
 &quot;*&quot; is displayed; other gap sizes are indicated by &quot;+&quot;.</p>
 <p>
 Codon translation is available in base-level display mode if the
 displayed region is identified as a coding segment. To display this annotation,
 select the species for translation from the pull-down menu in the Codon
 Translation configuration section at the top of the page. Then, select one of
 the following modes:
 <ul>
 <li>
 <b>No codon translation:</b> The gene annotation is not used; the bases are
 displayed without translation.
 <li>
 <b>Use default species reading frames for translation:</b> The annotations from
 the genome displayed in the <em>Default species to establish reading frame</em>
 pull-down menu are used to translate all the aligned species present in the
 alignment.
 <li>
 <b>Use reading frames for species if available, otherwise no translation:</b>
 Codon translation is performed only for those species where the region is
 annotated as protein coding.
 <li><b>Use reading frames for species if available, otherwise use default species:</b>
 Codon translation is done on those species that are annotated as being protein
 coding over the aligned region using species-specific annotation; the remaining
 species are translated using the default species annotation.
 </ul></p>
 <p>
 Codon translation uses the following gene tracks as the basis for
 translation, depending on the species chosen (<b>Table 2</b>).
 
 <blockquote><table border=1 cellpadding=4 bordercolor="#aaaaaa">
 <tr align=left><td><b>Gene Track</b></td><td><b>Species</b></td></tr>
 <tr align=left><td>Ensembl Genes v92</td><td>C. elegans, Ciona intestinalis</td></tr>
 <tr align=left><td>WormBase WS245 genes</td><td>C. angaria, C. japonica, C. briggsae, C. sp. 5 ju800, C. remanei, C. brenneri, C. tropicalis, P. exspectatus, P. pacificus, Pine wood nematode, N. americanus, A. ceylanicum, Pig roundworm, Barber pole worm, Whipworm, Microworm, Filarial worm, Dog heartworm, O. volvulus, Eye worm, M. incognita, M. hapla, H. bacteriophora/m31e, Trichinella</td></tr>
 <tr align=left><td>no annotations</td><td>all others</td></tr>
 </td></tr>
 </table>
 <b>Table 2.</b> <em>Gene tracks used for codon translation.</em>
 </blockquote></p>
 
 <h2>Methods</h2>
 <p>
 Pairwise alignments with the $organism genome were generated for
 each species using lastz from repeat-masked genomic sequence.
 Pairwise alignments were then linked into chains using a dynamic programming
 algorithm that finds maximally scoring chains of gapless subsections
 of the alignments organized in a kd-tree.
 Please note the <a href="http://genomewiki.ucsc.edu/index.php/Ce11_135-way_Genome_size_statistics"
 target="_blank">specific parameters</a> for the alignments.
 High-scoring chains were then placed along the genome, with
 gaps filled by lower-scoring chains, to produce an alignment net.
 For more information about the chaining and netting process and
 parameters for each species, see the description pages for the 
 <a href="../cgi-bin/hgTrackUi?db=ce11&g=nematodesChainNet" target="_blank">
 Chain and Net tracks.</a>
 </p>
 <p>
 The resulting best-in-genome pairwise alignments
 were progressively aligned using multiz/autoMZ,
 following the tree topology diagrammed above, to produce multiple alignments.
 The multiple alignments were post-processed to
 add annotations indicating alignment gaps, genomic breaks,
 and base quality of the component sequences.
 The annotated multiple alignments, in MAF format, are available for
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/multiz135way"
 target="_blank">bulk download</a>.
 An alignment summary table containing an entry for each
 alignment block in each species was generated to improve
 track display performance at large scales.
 Framing tables were constructed to enable
 visualization of codons in the multiple alignment display.</p>
 
 <h3> Phylogenetic Tree Model</h3>
 <p>
 Both <em>phastCons</em> and <em>phyloP</em> are phylogenetic methods that rely
 on a tree model containing the tree topology, branch lengths representing
 evolutionary distance at neutrally evolving sites, the background distribution
 of nucleotides, and a substitution rate matrix.
 The
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/phastCons135way/ce11.phastCons135way.mod"
 target="_blank">all species tree model</a> for this track was
 generated using the <em>phyloFit</em> program from the PHAST package
 (REV model, EM algorithm, medium precision) using multiple alignments of
 4-fold degenerate sites extracted from the 135-way alignment
 (msa_view).  The 4d sites were derived from the NCBI RefSeq gene set,
 filtered to select single-coverage long transcripts.
 </p>
 <p>
 This same tree model was used in the phyloP calculations, however their
 background frequencies were modified to maintain reversibility.
 The resulting tree model for
 <a href="http://hgdownload.soe.ucsc.edu/goldenPath/ce11/phyloP135way/ce11.phyloP135way.mod"
 target="_blank">all species</a>.
 </p>
 <h3> PhastCons Conservation </h3>
 <p>
 The phastCons program computes conservation scores based on a phylo-HMM, a
 type of probabilistic model that describes both the process of DNA
 substitution at each site in a genome and the way this process changes from
 one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and
 Haussler 2005).  PhastCons uses a two-state phylo-HMM, with a state for
 conserved regions and a state for non-conserved regions.  The value plotted
 at each site is the posterior probability that the corresponding alignment
 column was "generated" by the conserved state of the phylo-HMM.  These
 scores reflect the phylogeny (including branch lengths) of the species in
 question, a continuous-time Markov model of the nucleotide substitution
 process, and a tendency for conservation levels to be autocorrelated along
 the genome (i.e., to be similar at adjacent sites).  The general reversible
 (REV) substitution model was used.  Unlike many conservation-scoring programs,
 phastCons does not rely on a sliding window
 of fixed size; therefore, short highly-conserved regions and long moderately
 conserved regions can both obtain high scores.
 More information about
 phastCons can be found in Siepel <em>et al</em>. 2005.</p>
 <p>
 The phastCons parameters used were: expected-length=45,
 target-coverage=0.3, rho=0.3.</p>
 
 <h3> PhyloP Conservation </h3>
 <p>
 The phyloP program supports several different methods for computing
 p-values of conservation or acceleration, for individual nucleotides or
 larger elements
 (<a href="http://compgen.cshl.edu/phast/" target="_blank">
 http://compgen.cshl.edu/phast/</a>).
 Here it was used
 to produce separate scores at each base (--wig-scores option), considering
 all branches of the phylogeny rather than a particular subtree or lineage
 (i.e., the --subtree option was not used).  The scores were computed by
 performing a likelihood ratio test at each alignment column (--method LRT),
 and scores for both conservation and acceleration were produced (--mode CONACC).
 </p>
 <h3> Conserved Elements </h3>
 <p>
 The conserved elements were predicted by running phastCons with the
 --viterbi option.  The predicted elements are segments of the alignment
 that are likely to have been "generated" by the conserved state of the
 phylo-HMM. Each element is assigned a log-odds score equal to its log
 probability under the conserved model minus its log probability under the
 non-conserved model. The "score" field associated with this track contains
 transformed log-odds scores, taking values between 0 and 1000. (The scores
 are transformed using a monotonic function of the form a * log(x) + b.) The
 raw log odds scores are retained in the "name" field and can be seen on the
 details page or in the browser when the track's display mode is set to
 "pack" or "full".
 </p>
 
 <h2>Credits</h2>
 <p> This track was created using the following programs:
 <ul>
 <li> Alignment tools: lastz (formerly blastz) and multiz by Minmei Hou, Scott Schwartz and Webb
 Miller of the <a href="http://www.bx.psu.edu/miller_lab/"
 target="_blank">Penn State Bioinformatics Group</a>
 <li> Chaining and Netting:  axtChain, chainNet by Jim Kent at UCSC
 <li> Conservation scoring: phastCons, phyloP, phyloFit, tree_doctor, msa_view and
 other programs in PHAST by
 <a href="https://siepellab.labsites.cshl.edu/"
 target="_blank">Adam Siepel</a> at Cold Spring Harbor Laboratory (original development
 done at the Haussler lab at UCSC).
 <li> MAF Annotation tools: mafAddIRows by Brian Raney, UCSC; mafAddQRows
 by Richard Burhans, Penn State; genePredToMafFrames by Mark Diekhans, UCSC
 <li> Tree image generator: phyloPng by Galt Barber, UCSC
 <li> Conservation track display: Kate Rosenbloom, Hiram Clawson (wiggle
 display), and Brian Raney (gap annotation and codon framing) at UCSC
 </ul>
 </p>
 <p>The phylogenetic tree is based on Murphy <em>et al</em>. (2001) and general
 consensus in the vertebrate phylogeny community as of March 2007.
 </p>
 
 <h2>References</h2>
 
 <h3>Phylo-HMMs, phastCons, and phyloP:</h3>
 <p>
 Felsenstein J, Churchill GA.
 <a href="https://academic.oup.com/mbe/article/13/1/93/1055515/A-Hidden-Markov-Model-approach-to-
 variation-among" target="_blank">A Hidden Markov Model approach to
 variation among sites in rate of evolution</a>.
 <em>Mol Biol Evol</em>. 1996 Jan;13(1):93-104.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/8583911" target="_blank">8583911</a>
 </p>
 
 <p>
 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A.
 <a href="https://genome.cshlp.org/content/20/1/110.long" target="_blank">
 Detection of nonneutral substitution rates on mammalian phylogenies</a>.
 <em>Genome Res</em>. 2010 Jan;20(1):110-21.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/19858363" target="_blank">19858363</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798823/" target="_blank">PMC2798823</a>
 </p>
 
 <p>
 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
 Clawson H, Spieth J, Hillier LW, Richards S, <em>et al.</em>
 <a href="https://genome.cshlp.org/content/15/8/1034"
 target="_blank">Evolutionarily conserved elements in vertebrate, insect, worm,
 and yeast genomes</a>.
 <em>Genome Res</em>. 2005 Aug;15(8):1034-50.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/16024819" target="_blank">16024819</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182216/" target="_blank">PMC1182216</a>
 </p>
 
 <p>
 Siepel A, Haussler D.
 <a href="http://compgen.cshl.edu/~acs/phylohmm.pdf"
 target="_blank">Phylogenetic Hidden Markov Models</a>.
 In: Nielsen R, editor. Statistical Methods in Molecular Evolution.
 New York: Springer; 2005. pp. 325-351.
 </p>
 
 <p>
 Yang Z.
 <a href="https://www.genetics.org/content/139/2/993"
 target="_blank">A space-time process model for the evolution of DNA
 sequences</a>.
 <em>Genetics</em>. 1995 Feb;139(2):993-1005.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/7713447" target="_blank">7713447</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1206396/" target="_blank">PMC1206396</a>
 </p>
 
 <h3>Chain/Net:</h3>
 <p>
 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D.
 <a href="https://www.pnas.org/content/100/20/11484"
 target="_blank">Evolution's cauldron:
 duplication, deletion, and rearrangement in the mouse and human genomes</a>.
 <em>Proc Natl Acad Sci U S A</em>. 2003 Sep 30;100(20):11484-9.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/14500911" target="_blank">14500911</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC208784/" target="_blank">PMC208784</a>
 </p>
 
 <h3>Multiz:</h3>
 <p>
 Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM,
 Baertsch R, Rosenbloom K, Clawson H, Green ED, <em>et al.</em>
 <a href="https://genome.cshlp.org/content/14/4/708.abstract"
 target="_blank">Aligning multiple genomic sequences with the threaded blockset aligner</a>.
 <em>Genome Res</em>. 2004 Apr;14(4):708-15.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/15060014" target="_blank">15060014</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383317/" target="_blank">PMC383317</a>
 </p>
 
 <h3>Lastz (formerly Blastz):</h3>
 <p>
 Chiaromonte F, Yap VB, Miller W.
 <a href="http://psb.stanford.edu/psb-online/proceedings/psb02/chiaromonte.pdf"
 target="_blank">Scoring pairwise genomic sequence alignments</a>.
 <em>Pac Symp Biocomput</em>. 2002:115-26.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/11928468" target="_blank">11928468</a>
 </p>
 
 <p>
 Harris RS.
 <a href="http://www.bx.psu.edu/~rsharris/rsharris_phd_thesis_2007.pdf"
 target="_blank">Improved pairwise alignment of genomic DNA</a>.
 <em>Ph.D. Thesis</em>. Pennsylvania State University, USA. 2007.
 </p>
 
 <p>
 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
 Haussler D, Miller W.
 <a href="https://genome.cshlp.org/content/13/1/103.abstract"
 target="_blank">Human-mouse alignments with BLASTZ</a>.
 <em>Genome Res</em>. 2003 Jan;13(1):103-7.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/12529312" target="_blank">12529312</a>; PMC: <a
 href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC430961/" target="_blank">PMC430961</a>
 </p>
 
 
 <h3>Phylogenetic Tree:</h3>
 <p>
 Bernard G, Ragan MA, Chan CX.
 <a href="https://f1000research.com/articles/5-2789/v2"
 target="_blank">Recapitulating phylogenies using k-mers: from trees to networks</a>.
 <em>F1000Res</em>. 2016;5:2789.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/28105314" target="_blank">28105314</a>
 </p>
 
 <p>
 Fan H, Ives AR, Surget-Groba Y, Cannon CH.
 <a href="https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1647-5"
 target="_blank">An assembly and alignment-free method of phylogeny reconstruction from 
 next-generation sequencing data</a>. <em>BMC Genomics</em>. 2015;16(1):522.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/26169061" target="_blank">26169061</a>
 </p>
 
 <p>
 Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E,
 Ryder OA, Stanhope MJ, de Jong WW, Springer MS.
 <a href="https://science.sciencemag.org/content/294/5550/2348"
 target="_blank">Resolution of the early placental mammal radiation using Bayesian phylogenetics</a>.
 <em>Science</em>. 2001 Dec 14;294(5550):2348-51.
 PMID: <a href="https://www.ncbi.nlm.nih.gov/pubmed/11743200" target="_blank">11743200</a>
 </p>