735f7be7f5d6854830d5ef7cc5387fc29027778d
lrnassar
  Thu Jun 19 18:21:58 2025 -0700
Making improvements to the panelApp otto job, primarily in support of the new panelApp Australia track. 1. Adding our standard check that will cause an exit if the item count is more than 10% different. 2. Tweak Max's code to fix an issue when specifying the specific panels to extract, this is used for the Australia genes track. 3. Remove the check that only made track items if the versions was >.99, we now make track items out of everything. 4. Max had accidentally specified the two 'onlyPanels' for Genomics England, but it should be Australia. Refs #35758

diff --git src/hg/utils/otto/panelApp/doPanelApp.py src/hg/utils/otto/panelApp/doPanelApp.py
index 9d634e6af7b..07ff72860f3 100755
--- src/hg/utils/otto/panelApp/doPanelApp.py
+++ src/hg/utils/otto/panelApp/doPanelApp.py
@@ -1,982 +1,1003 @@
 #!/hive/data/outside/otto/panelApp/venv/bin/python3
+
 from datetime import date
-import os
-import shutil
-import requests
-import time
-import json 
 import pandas as pd 
-import sys 
-import re
-import gzip
-import logging
+import gzip, logging, re, sys, json, time, requests, shutil, os, subprocess
+
+def bash(cmd):
+    """Run the cmd in bash subprocess"""
+    try:
+        rawBashOutput = subprocess.run(cmd, check=True, shell=True,\
+                                       stdout=subprocess.PIPE, universal_newlines=True, stderr=subprocess.STDOUT)
+        bashStdoutt = rawBashOutput.stdout
+    except subprocess.CalledProcessError as e:
+        raise RuntimeError("command '{}' return with error (code {}): {}".format(e.cmd, e.returncode, e.output))
+    return(bashStdoutt)
 
 def getArchDir(db):
     " return hgwdev archive directory given db "
     dateStr = date.today().strftime("%Y-%m-%d")
     archDir = "/usr/local/apache/htdocs-hgdownload/goldenPath/archive/%s/panelApp/%s" % (db, dateStr)
     if not os.path.isdir(archDir):
         os.makedirs(archDir)
     return archDir
 
 def writeBb(hg19Table, hg38Table, subTrack):
     " sort the pandas tables, write to BED and convert "
     for db in ["hg19", "hg38"]:
         archDir = getArchDir(db)
 
         bedFname = "current/%s/%s.bed" % (db, subTrack)
         bbFname = "current/%s/%s.bb.tmp" % (db, subTrack)
 
         if db=="hg19":
             pdTable = hg19Table
         else:
             pdTable = hg38Table
 
         # for cnvs, one of the arguments can be None
         if pdTable is None:
             continue
 
         pdTable.sort_values(by=['chrom','chromStart'], ascending = (True, True), inplace=True)
         pdTable = pdTable.applymap(lambda x: x.replace('\t', ' ') if isinstance(x, str) else x)
         pdTable.to_csv(bedFname, sep='\t', index=False, header=None)
 
         asFname = subTrack+".as"
 
         # -extraIndex=geneName 
         cmd = "bedToBigBed -tab -as=%s -type=bed9+26 %s /hive/data/genomes/%s/chrom.sizes %s" % (asFname, bedFname, db, bbFname)
         assert(os.system(cmd)==0)
 
         # put a copy into the archive
         archBbFname = archDir+"/%s.bb" % subTrack
         shutil.copyfile(bbFname, archBbFname)
 
 def updateGbdbSymlinks(country):
     " update the symlinks in /gbdb. Not really necessary but kept this code just in case. "
     if country == "Australia":
         subtracks = ["genesAus", "tandRepAus", "cnvAus"]
     else:
         subtracks = ["genes", "tandRep", "cnv"]
     for db in ["hg19", "hg38"]:
         archDir = getArchDir(db)
         for subTrack in subtracks:
             if db=="hg19" and "cnv" in subTrack:
                 continue # no cnv on hg19
             cmd = "ln -sf `pwd`/current/%s/%s.bb /gbdb/%s/panelApp/%s.bb" % (db, subTrack, db, subTrack)
             assert(os.system(cmd)==0)
 
+def checkIfFilesTooDifferent(oldFname,newFname):
+    # Exit if the difference is more than 10%
+
+    oldItemCount = bash('bigBedInfo '+oldFname+' | grep "itemCount"')
+    oldItemCount = int(oldItemCount.rstrip().split("itemCount: ")[1].replace(",",""))
+    
+    newItemCount = bash('bigBedInfo '+newFname+' | grep "itemCount"')
+    newItemCount = int(newItemCount.rstrip().split("itemCount: ")[1].replace(",",""))
+
+    if abs(newItemCount - oldItemCount) > 0.1 * max(newItemCount, oldItemCount):
+        sys.exit(f"Difference between itemCounts greater than 10%: {newItemCount}, {oldItemCount}")
+    else:
+        print(oldFname+" vs. new count: "+str(oldItemCount)+" - "+str(newItemCount))
+
 def flipFiles(country):
     " rename the .tmp files to the final filenames "
     if country == "Australia":
         subtracks = ["genesAus", "tandRepAus", "cnvAus"]
     else:
         subtracks = ["genes", "tandRep", "cnv"]
     for db in ["hg19", "hg38"]:
         archDir = getArchDir(db)
         for subTrack in subtracks:
             if db=="hg19" and "cnv" in subTrack:
                 # no cnvs for hg19 yet
                 continue
             oldFname = "current/%s/%s.bb.tmp" % (db, subTrack)
             newFname = "current/%s/%s.bb" % (db, subTrack)
+
+            #Check if files are more than 10% different
+            checkIfFilesTooDifferent(oldFname,newFname)
+            
             os.replace(oldFname, newFname)
 
 def getAllPages(url, results=[]):
     " recursively download all pages. Stack should be big enough "
     try:
         myResponse = requests.get(url)
         if (myResponse.ok):
             jData = json.loads(myResponse.content.decode())
             # If jData is empty create, else append
             if "error" in jData.keys() or not "results" in jData.keys():
                 raise Exception("Error in keys when downloading %s" % url)
 
             if "count" in jData and not "page" in url:
                 print("API says that there are %d results for url %s" % (jData["count"], url))
             results.extend(jData["results"])
 
             if "next" in jData and jData["next"] is not None: # need to get next URL
                 return getAllPages(jData["next"], results)
         else:
             raise Exception("Error in object when downloading %s" % url)
     except:
         raise Exception("HTTP Error when downloading %s" % url)
     return results
 
 def downloadCnvs(url):
     Error = True
     continuous_count=0
     res = getAllPages(url, results=[])
 
     num_gene_data = len(res)
     print("Got %d CNVs" % num_gene_data)
     count = 0
     continuous_count = 0
     hg19_dict = dict()
     hg38_dict = dict()
 
     for geneCount, cnvData in enumerate(res):
         temp_attribute_dictionary = dict()
         string_dict_key = 'gene_{}'.format(geneCount)
         
         chromo = cnvData['chromosome']
         chromosome = 'chr' + chromo
 
         start_coordinates = cnvData['grch38_coordinates'][0]
         end_coordinates = cnvData['grch38_coordinates'][1]
 
         score = '0'
         strand = '.'
         thickStart = start_coordinates
         thickEnd = end_coordinates
         blockCount = '1'
         blockSizes = int(end_coordinates) - int(start_coordinates)
         blockStarts = 0
         
         confidence_level = cnvData['confidence_level']
 
         rgb_dict = {'0' : '100,100,100', '3': '0,255,0', '2': '255,191,0', '1':'255,0,0'}
         itemRgb = rgb_dict[confidence_level]
         
         entity_name = cnvData['entity_name']
         entity_type = cnvData['entity_type']
         evidence = ' '.join(cnvData['evidence'])
 
         haploinsufficiency_score = cnvData.get('haploinsufficiency_score')
         if not haploinsufficiency_score:
             haploinsufficiency_score = ''
 
         moi = cnvData.get('mode_of_inheritance')
         if not moi:
             moi = ''
 
         disease_group = cnvData['panel'].get('disease_group')
         if not disease_group:
             disease_group = ''
 
         disease_sub_group = cnvData['panel'].get('disease_sub_group')
         if not disease_sub_group:
             disease_sub_group = ''
 
         # idd = Panel ID
         idd = cnvData['panel'].get('id')
         if not idd:
             idd = ''
 
         panel_name = cnvData['panel'].get('name')
         if not panel_name:
             panel_name = ''
         
         relevant_disorders = ' '.join(cnvData['panel'].get('relevant_disorders', []))
         if not relevant_disorders:
             relevant_disorders = ''
 
         status = cnvData['panel'].get('status')
         if not status:
             status = ''
         
         '''
         types = cnvData['panel'].get['types')
         if not types:
             types = ''
         else:
             types = str(types).replace("{","").replace("}", "").replace("'", "")
             types = types[1:-1]
         '''
 
         types = cnvData['panel']['types'][0].get('name')
 
         version = cnvData['panel']['version']
         if 'genomicsengland' in url:
             if float(version) < 0.99:
                 continue
             if not version:
                 version = ''
         else:
             if not version:
                 version = ''
 
         penetrance = cnvData.get('penetrance')
         if not penetrance:
             penetrance = ''
 
         phenotypes = ' '.join(cnvData.get('phenotypes', []))
         if not phenotypes:
             phenotypes = ''
 
         publications = ' '.join(cnvData['publications'])
         if not publications:
             publications = ''
         
         #required_overlap_percentage = cnvData['required_overlap_percentage']
         tags = cnvData['tags']
         if not tags:
             tags = ''
     
         triplosensitivity_score = cnvData.get('triplosensitivity_score')
         if not triplosensitivity_score:
             triplosensitivity_score = ''
     
         type_of_variants = None
         if "type_of_variants" in cnvData:
             type_of_variants = cnvData['type_of_variants']
         if not type_of_variants:
             type_of_variants = ''
 
         verbose_name = cnvData.get('verbose_name')
         if not verbose_name:
             verbose_name = ''    
 
         # Mouse Over Field
         mouseOverField = ""
         try:
             mof = 'Gene: ' +  entity_name + ';' + ' Panel: ' + name + ';' + ' MOI: ' + moi + ';' + ' Phenotypes: ' + phenotypes + ';' + ' Confidence: ' + confidence_level + ';'    
             mouseOverField = mof
         except:
             mouseOverField = ''        
 
         # name
         name = '{} ({})'.format(entity_name, panel_name)
         
         hg38_dict[string_dict_key] = [chromosome, start_coordinates, end_coordinates, name, score, strand, 
                             thickStart, thickEnd, itemRgb, blockCount, blockSizes, blockStarts, confidence_level, 
                             panel_name, idd, entity_name, entity_type, evidence, haploinsufficiency_score, moi, disease_group, 
                             disease_sub_group, relevant_disorders, status, types, version, penetrance, phenotypes, 
                             publications, triplosensitivity_score, type_of_variants, verbose_name, mouseOverField]
         
         #-------------------------------------------------------------------------------
     
         continuous_count = continuous_count + 1
         #count = count + 1
 
     # Removes new lines
     for key, item in hg38_dict.items():
         strip_list = list()
         for i in item:
             try:
                 strip_list.append(i.replace('\t', ' ').strip().strip("\n").strip("\r"))
             except:
                 strip_list.append(i)
         hg38_dict[key] = strip_list
 
     pd_38_table = pd.DataFrame.from_dict(hg38_dict)
     pd_38_table = pd_38_table.T
     pd_38_table.columns = ['chrom', 'chromStart', 'End', 'name', 'Score', 'strand', 'thickStart', 'thickEnd', 
                             'itemRgb', 'blockCount', 'blockSizes', 'blockStarts', 'Confidence Level', 
                             'Panel Name', 'Panel ID', 'Entity Name', 'Entity Type', 'Evidence', 'ClinGen Haploinsufficiency Score', 
                             'Mode of Inheritance', 'Disease Group', 'Disease Sub Group', 'Relevant Disorders', 
                             'Status', 'Types', 'Version Created', 'Penetrance', 'Phenotypes', 'Publications', 
                             'CinGen Triplosensitivity Score', 'Type of Variants', 'Verbose Name', 'Mouse Over Field']
     #pd_38_table = pd_38_table.sort_values(by=['chromosome', 'Start'], ascending = (True, True))
     #pd_38_table.to_csv('hg38_region_noheader_sorted.tsv', sep='\t', index=False, header=None) 
     #pd_38_table.to_csv('hg38_region_header_sorted.tsv', sep='\t', index=False) 
     return pd_38_table
 
 def downloadTandReps(url):
     Error = True
     continuous_count=0
     res = getAllPages(url, results=[])
 
     num_gene_data = len(res)
     print("Got %d tandem repeats from API" % num_gene_data)
 
     count = 0
     continuous_count = 0
     hg19_dict = dict()
     hg38_dict = dict()
 
     while count != num_gene_data:
         #if count == 10:
         #    break
         string_dict_key = 'gene_{}'.format(continuous_count)
         
         temp_attribute_dictionary = dict()
         chromosome = res[count]['chromosome']    
         chromosome = 'chr{}'.format(chromosome)
         confidence_level = res[count]['confidence_level']
         entity_name = res[count]['entity_name']
         entity_type = res[count]['entity_type']
         evidence = ' '.join(res[count]['evidence'])
         
         gene_data = res[count]['gene_data']
         if gene_data:
             alias = ' '.join(gene_data.get('alias', []))
             biotype = gene_data['biotype']
         else:
             alias = ""
             biotype = ""
         try:
             ensembl_id_37 = gene_data['ensembl_genes']['GRch37']['82']['ensembl_id']
         except:
             ensembl_id_37 = "None"
         try:        
             ensembl_id_38 = gene_data['ensembl_genes']['GRch38']['90']['ensembl_id']
         except:
             ensembl_id_38 = "None"        
         
         gene_name = gene_data['gene_name']
         #gene_symbol = gene_data['gene_symbol']
         #hgnc_date_symbol_changed = gene_data['hgnc_date_symbol_changed']
         hgnc_id = gene_data['hgnc_id']
         hgnc_symbol = gene_data['hgnc_symbol']
         if str(gene_data['omim_gene']) == "None":
             omim_gene = "None"
         else:
             omim_gene = ' '.join(gene_data['omim_gene'])
         grch37_coordinates = res[count]['grch37_coordinates']
         if grch37_coordinates == None:
             coordinates = gene_data['ensembl_genes']['GRch37']['82']['location'] 
             location = coordinates.split(':')
             grch37_coordinates = location[1].split('-')
         chromStart_19 = int(grch37_coordinates[0])
         chromEnd_19 = int(grch37_coordinates[1])
 
         # hg38
         grch38_coordinates = res[count]['grch38_coordinates']
         if grch38_coordinates == None:
             coordinates = gene_data['ensembl_genes']['GRch38']['90']['location'] 
             location = coordinates.split(':')
             grch38_coordinates = location[1].split('-')
 
         mode_of_inheritance = res[count]['mode_of_inheritance']
         normal_repeats = res[count]['normal_repeats']
         chromStart_38 = int(grch38_coordinates[0])
         chromEnd_38 = int(grch38_coordinates[1])
         
         panel = res[count]['panel']
         disease_group = panel['disease_group']
         disease_sub_group = panel['disease_sub_group']
         hash_id = panel['hash_id']
         idd = panel['id']
         panel_name = panel['name']
         relevant_disorders = ' '.join(panel['relevant_disorders'])
         #relevant_disorders = relevant_disorders[:240]
         
         stats = panel['stats']
         number_of_gene = stats['number_of_genes']
         number_of_regions = stats['number_of_regions']
         number_of_strs = stats['number_of_strs']
 
         status = panel['status']
         #description = panel['types'][0]['description'][:240]
         description = panel['types'][0]['description']
         version = panel['version']
         version_created = panel['version_created']
         pathogenic_repeats = res[count]['pathogenic_repeats']
         penetrance = res[count]['penetrance']
         phenotypes = ' '.join(res[count]['phenotypes'])
         phenotypes_no_num = ''.join([i for i in phenotypes if not i.isdigit()])
         publications = ' '.join(res[count]['publications'])
         repeated_sequence = res[count]['repeated_sequence']
         tags = ' '.join(res[count]['tags'])
 
         # Check to see if panel_name is not empty
         if panel_name:
             try:
                 panel_name = panel_name.split(' - ')
                 panel_name = panel_name[0]
                 name = '{} ({})'.format(hgnc_symbol, panel_name)
             except:
                 name = '{} ({})'.format(hgnc_symbol, panel_name)
         else:
             name = hgnc_symbol
         score = 0
         strand = '.'
         thickStart_19 = chromStart_19
         thickEnd_19 = chromEnd_19
         thickStart_38 = chromStart_38
         thickEnd_38 = chromEnd_38
 
         rgb_dict = {'3': '0,255,0', '2': '255,191,0', '1':'255,0,0'}
         # If the confidence level is set to 0, set to 1
         if confidence_level == '0':
             confidence_level = '1'
         rgb = rgb_dict[confidence_level]
         rgb = rgb.strip('"')
         blockCount = 1
         
         # Cases where coordinates are reads as string data types instead of ints
         try:
             blockSizes_19 = chromEnd_19 - chromStart_19
         except:
             blockSizes_19 = int(chromEnd_19) - int(chromStart_19)
 
         try:
             blockSizes_38 = chromEnd_38 - chromStart_38
         except:
             blockSizes_39 = int(chromEnd_38) - int(chromStart_38)
 
         blockStarts = 0
         geneSymbol = hgnc_symbol
 
         #-------------------------------------------------------------------------------
 
         temp19_list = [chromosome, chromStart_19, chromEnd_19, name, score, strand,
         thickStart_19, thickEnd_19, rgb, blockCount, blockSizes_19, chromStart_19, geneSymbol, confidence_level, 
         entity_type, evidence, alias, ensembl_id_37, gene_name, hgnc_id, hgnc_symbol, omim_gene, 
         mode_of_inheritance, normal_repeats, disease_group, disease_sub_group, idd, panel_name, 
         relevant_disorders, number_of_gene, number_of_regions, number_of_strs, description, 
         version, version_created, pathogenic_repeats, penetrance, phenotypes, 
         publications, repeated_sequence]
         
         try: 
             temp19_list = [i.replace('\t', ' ').strip().strip("\n").strip("\r") for i in temp19_list]
         except:
             hg19_dict[string_dict_key] = temp19_list
 
         #-------------------------------------------------------------------------------
 
         temp38_list = [chromosome, chromStart_38, chromEnd_38, name, score, strand,
         thickStart_38, thickEnd_38, rgb, blockCount, blockSizes_38, chromStart_38, geneSymbol, confidence_level, 
         entity_type, evidence, alias, ensembl_id_38, gene_name, hgnc_id, hgnc_symbol, omim_gene, 
         mode_of_inheritance, normal_repeats, disease_group, disease_sub_group, idd, panel_name, 
         relevant_disorders, number_of_gene, number_of_regions, number_of_strs, description, 
         version, version_created, pathogenic_repeats, penetrance, phenotypes, 
         publications, repeated_sequence]
         
         try: 
             temp38_list = [i.replace('\t', ' ').strip().strip("\n").strip("\r") for i in temp38_list]
         except:
             hg38_dict[string_dict_key] = temp38_list
 
         #-------------------------------------------------------------------------------
     
         continuous_count = continuous_count + 1
         count = count + 1
 
     pd_19_table = pd.DataFrame.from_dict(hg19_dict)
     pd_19_table = pd_19_table.T
     pd_19_table.columns = ['chrom', 'chromStart', 'chromEnd', 'name', 'score', 'strand',
         'thickStart', 'thickEnd', 'rgb', 'blockCount', 'blockSizes', 'blockStarts', 'geneSymbol', 
         'confidence_level', 'entity_type', 'evidence', 'alias', 'ensembl_id_37', 'gene_name', 
         'hgnc_id', 'geneSymbol', 'omim_gene', 'mode_of_inheritance', 'normal_repeats', 'disease_group', 
         'disease_sub_group', 'idd', 'panel_name', 'relevant_disorders', 'number_of_gene', 'number_of_regions', 
         'number_of_strs', 'description', 'version', 'version_created', 'pathogenic_repeats', 'penetrance', 
         'phenotypes', 'publications', 'repeated_sequence']
     #pd_19_table = pd_19_table.sort_values(by=['chrom','chromStart'], ascending = (True, True))
     #pd_19_table.to_csv('str_hg19.bed', sep='\t', index=False, header=None)
 
     pd_38_table = pd.DataFrame.from_dict(hg38_dict)
     pd_38_table = pd_38_table.T
     pd_38_table.columns = ['chrom', 'chromStart', 'chromEnd', 'name', 'score', 'strand',
         'thickStart', 'thickEnd', 'rgb', 'blockCount', 'blockSizes', 'blockStarts', 'geneSymbol', 
         'confidence_level', 'entity_type', 'evidence', 'alias', 'ensembl_id_37', 'gene_name', 
         'hgnc_id', 'geneSymbol', 'omim_gene', 'mode_of_inheritance', 'normal_repeats', 'disease_group', 
         'disease_sub_group', 'idd', 'panel_name', 'relevant_disorders', 'number_of_gene', 'number_of_regions', 
         'number_of_strs', 'description', 'version', 'version_created', 'pathogenic_repeats', 'penetrance', 
         'phenotypes', 'publications', 'repeated_sequence']
     #pd_38_table = pd_38_table.sort_values(by=['chrom','chromStart'], ascending = (True, True))
     #pd_38_table.to_csv('hg38_str_noheader_sorted.tsv', sep='\t', index=False, header=None)
 
     return pd_19_table, pd_38_table
 
 def getPanelIds(url):
     #logging.basicConfig(level=logging.DEBUG)
     logging.basicConfig(level=logging.INFO)
     logging.getLogger("urllib3").propagate = False
 
     logging.info("Downloading panel IDs")
     panelIds = []
 
     gotError = False
     while not gotError:
         logging.debug("Getting %s" % url)
         myResponse = requests.get(url)
 
         jsonData = myResponse.content
         #jsonFh.write(jsonData)
         #jsonFh.write("\n".encode())
         data = json.loads(jsonData.decode())
 
         for res in data["results"]:
             panelIds.append(res["id"])
 
         logging.debug("Total Panel IDs downloaded:  %s" % len(panelIds))
         url = data["next"]
         if url is None:
             break
 
     return panelIds
 
 def downloadPanels(url):
     panelIds = getPanelIds(url)
     panelInfos = {}
 
     for panelId in panelIds:
         if 'england' in url:
             panelUrl = "https://panelapp.genomicsengland.co.uk/api/v1/panels/%d?format=json" % panelId
         elif 'aus' in url:
             panelUrl = "https://panelapp-aus.org/api/v1/panels/%d/?format=json" % panelId
         logging.debug("Getting %s" % panelUrl)
         resp = requests.get(panelUrl)
         res  = resp.json()
 
         panelInfos[panelId] = res
 
     return panelInfos
 
 def getGeneSymbols(url):
     try:
         panelInfos = downloadPanels(url)
     except requests.exceptions.JSONDecodeError:
         time.sleep(30)
         panelInfos = downloadPanels(url)
 
     syms = set()
     for panelInfo in panelInfos.values():
         for gene in panelInfo["genes"]:
             sym = gene["gene_data"]["gene_symbol"]
             syms.add(sym)
             assert(sym!="")
     logging.info("Got %d gene symbols" % len(syms))
     return list(syms)
 
 def getGenesLocations(jsonFh,url,onlyPanels):
     hg19_dict = dict()
     hg38_dict = dict()
     repeat19 = list()
     repeat38 = list()
     continuous_count = 0
     genes_missing_info = list()
     genes_no_location = list()
 
     syms = getGeneSymbols(url)
 
     for sym in syms:
         if 'england' in url:
             entityUrl = "https://panelapp.genomicsengland.co.uk/api/v1/genes/?entity_name={}&format=json".format(sym)
         elif 'aus' in url:
             entityUrl = "https://panelapp-aus.org/api/v1/genes/?entity_name={}&format=json".format(sym)
 
         count = 0
         while True:
             try:
                 myResponse = requests.get(entityUrl)
                 if myResponse.ok:
                     break
                 else:
                     logging.error("Some error on %s, retrying after 1 minute (trial %d)" % (entityUrl, count))
             except Exception:
                 logging.error("HTTP error on %s, retrying after 1 minute (trial %d)" % (entityUrl, count))
 
             time.sleep(60)    # Wait 1 minute before trying again
             count += 1        # Count the number of tries before failing
             if count > 10:    # Quit afer 10 failed attempts
                 assert False, "Cannot get URL after 10 attempts"
 
         jsonData = myResponse.content
         #jData = myResponse.json()
         jData = json.loads(jsonData.decode())
 
         jsonFh.write(jsonData)
         jsonFh.write("\n".encode())
 
         res = jData['results']
+        
+        #filter by onlyPanels early, if specified
+        if onlyPanels is not None:
+            res = [entry for entry in res if entry.get('panel', {}).get('id') in onlyPanels]
+
         num_gene_variant = len(res)
         count = 0
         while count != num_gene_variant:
             temp_attribute_dictionary = dict()
             string_dict_key = 'gene_{}'.format(continuous_count)
 
             gene_range_37 = None
             gene_range_38 = None
 
             try:
                 ensembl_genes_GRch37_82_location = res[count]['gene_data']['ensembl_genes']['GRch37']['82']['location']
                 location_37 = ensembl_genes_GRch37_82_location.split(':')
                 chromo_37 = 'chr'+location_37[0]
                 gene_range_37 = location_37[1].split('-')
                 # on hg19, we have added a chrMT sequence later.
             except:
                 genes_missing_info.append(res[count]['gene_data']['gene_symbol']+"/hg19")
 
             try:
                 ensembl_genes_GRch38_90_location = res[count]['gene_data']['ensembl_genes']['GRch38']['90']['location']
                 location_38 = ensembl_genes_GRch38_90_location.split(':')
                 chromo_38 = 'chr'+location_38[0]
                 # Change mitochondrial chromosomal suffix from MT -> M for hg38 only
                 if chromo_38 == "chrMT":
                     chromo_38 = "chrM"
 
                 gene_range_38 = location_38[1].split('-')
             except:
                 genes_missing_info.append(res[count]['gene_data']['gene_symbol']+"/hg38")
 
             if gene_range_37 is None and gene_range_38 is None:
                 #print("gene without location on any assembly: %s" % res[count])
                 genes_no_location.append(res[count]['gene_data'])
                 count+=1
                 continue
 
             score = '0'
             strand = '.'
             blockCount = '1'
             blockStarts = '0'
 
             #-----------------------------------------------------------------------------------------------------------
 
             gene_data_list = ['gene_name', 'hgnc_symbol', 'hgnc_id']
             for attribute in gene_data_list:
                 try:
                     temp_attribute_dictionary[attribute] = res[count]['gene_data'][attribute]
                 except:
                     temp_attribute_dictionary[attribute] = ''
 
             try:
                 temp_attribute_dictionary['omim_gene'] = ' '.join(res[count]['gene_data']['omim_gene'])
             except:
                 temp_attribute_dictionary['omim_gene'] = ''
 
             try:
                 temp_attribute_dictionary['gene_symbol'] = res[count]['gene_data']['gene_symbol']
             except:
                 temp_attribute_dictionary['gene_symbol'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             # Need to split HGNC ID
             try:
                 hgnc = res[count]['gene_data']['hgnc_id']
                 temp_attribute_dictionary['hgnc_id'] = hgnc.split(':')[1]
             except:
                 temp_attribute_dictionary['hgnc_id'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             # Capitalize(title) gene name
 
             try:
                 gene_name = res[count]['gene_data']['gene_name'].title()
                 temp_attribute_dictionary['gene_name'] = gene_name
             except:
                 temp_attribute_dictionary['gene_name'] = ''
             #-----------------------------------------------------------------------------------------------------------
             # Biotype change protein_coding to Protein Coding
 
             try:
                 biotype = res[count]['gene_data']['biotype']
 
                 if biotype == 'protein_coding':
                     biotype = 'Protein Coding'
                 
                 temp_attribute_dictionary['biotype'] = biotype
                 if biotype == None:
                     temp_attribute_dictionary['biotype'] = ''
             except:
                 temp_attribute_dictionary['biotype'] = ''
 
             #-----------------------------------------------------------------------------------------------------------    
 
             try:
                 ensembl_genes_GRch37_82_ensembl_id = res[count]['gene_data']['ensembl_genes']['GRch37']['82']['ensembl_id']
                 ensembl_genes_GRch38_90_ensembl_id = res[count]['gene_data']['ensembl_genes']['GRch38']['90']['ensembl_id']
 
             except:
                 ensembl_genes_GRch37_82_ensembl_id = ''
 
             #-----------------------------------------------------------------------------------------------------------
 
             gene_type_list = ['confidence_level', 'phenotypes', 'mode_of_inheritance', 'tags']
 
             for attribute in gene_type_list:
                 try:
                     x = res[count][attribute]
                     if not x:
                         temp_attribute_dictionary[attribute] = ''
                     else:
                         pre = ' '.join(res[count][attribute])
                         temp_attribute_dictionary[attribute] = pre.replace('\t', ' ')
                 except:
                     temp_attribute_dictionary[attribute] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             # Cannot exceed 255 characters
             # Cannot have tabs
             try:
                 x = res[count]['phenotypes']
                 y = ' '.join(res[count]['phenotypes'])
 
                 if not x:
                     temp_attribute_dictionary['phenotypes'] = ''
                 else:
                     temp_attribute_dictionary['phenotypes'] = y.replace("\t", " ")
             except:
                 temp_attribute_dictionary['phenotypes'] = ''
             #-----------------------------------------------------------------------------------------------------------
             # Evidence cannot exceed 255 characters
             try:
                 x = res[count]['evidence']
                 y = ' '.join(res[count]['evidence'])
                 if not x:
                     temp_attribute_dictionary['evidence'] = ''
                 else:
                     temp_attribute_dictionary['evidence'] = y
             except:
                 temp_attribute_dictionary['evidence'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             tags = ' '.join(res[count]['tags']).title()
             try:
                 if not tags:
                     temp_attribute_dictionary['tags'] = ''
                 else:
                     temp_attribute_dictionary['tags'] = tags
             except:
                 temp_attribute_dictionary['tags'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             # Mode of Inheritance (fix format)
             MOI = ' '.join(res[count]['mode_of_inheritance']).replace("  ", "???").replace(" ", "").replace("???", " ")
             try:
                 if not MOI:
                     temp_attribute_dictionary['mode_of_inheritance'] = ''
                 else:
                     temp_attribute_dictionary['mode_of_inheritance'] = MOI
             except:
                 temp_attribute_dictionary['mode_of_inheritance'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             # For values with spaces 
             gene_type_list = ['entity_name', 'penetrance']
 
             for attribute in gene_type_list:
                 try:
                     temp_attribute_dictionary[attribute] = ' '.join(res[count][attribute]).replace(" ", "")
                 except:
                     temp_attribute_dictionary[attribute] = ''
             #-----------------------------------------------------------------------------------------------------------
             # For values with spaces and need to be capitalized
             attribute = 'entity_type'
 
             try:
                 temp_attribute_dictionary[attribute] = ' '.join(res[count][attribute]).replace(" ", "").capitalize()
             except:
                 temp_attribute_dictionary[attribute] = ''
             #-----------------------------------------------------------------------------------------------------------
             attribute = 'mode_of_pathogenicity'
 
             try:
                 mode = ' '.join(res[count][attribute]).replace("  ", "???").replace(" ", "").replace("???", " ")
                 if mode[0] == 'L' or mode[0] == 'l':
                     temp_attribute_dictionary[attribute] = 'Loss-of-function variants'
                 elif mode[0] == 'G' or mode[0] == 'g':
                     temp_attribute_dictionary[attribute] = 'Gain-of-function'
                 elif mode[0] == 'O' or mode[0] == 'o':
                     temp_attribute_dictionary[attribute] = 'Other'
                 else:
                     temp_attribute_dictionary[attribute] = mode
             except:
                 temp_attribute_dictionary[attribute] = ''
 
             #-----------------------------------------------------------------------------------------------------------
 
             panel_list = ['id','name', 'disease_group', 'disease_sub_group', 'status', 'version_created']
 
             for attribute in panel_list:
                 try:
                     x = res[count]['panel'][attribute]
-                    if attribute=="id" and onlyPanels is not None:
-                        if int(x) not in onlyPanels:
-                            continue
                     if not x:
                         temp_attribute_dictionary[attribute] = ''
                     else:
-                        temp_attribute_dictionary[attribute] = res[count]['panel'][attribute]
+                        temp_attribute_dictionary[attribute] = x
                 except:
                     temp_attribute_dictionary[attribute] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             
             version_num = 0.0
             try:
                 version_num = float(res[count]['panel']['version'])
                 temp_attribute_dictionary['version'] = version_num
             except:
                 temp_attribute_dictionary['version'] = ''
 
             #-----------------------------------------------------------------------------------------------------------
             
             try:
                 x = res[count]['panel']['relevant_disorders']
                 y = ' '.join(res[count]['panel']['relevant_disorders'])
                 if not x:
                     temp_attribute_dictionary['relevant_disorders'] = ''
                 else:
                     temp_attribute_dictionary['relevant_disorders'] = y
             except:
                 temp_attribute_dictionary['relevant_disorders'] = ''
             
             #-----------------------------------------------------------------------------------------------------------
             # minimal effort to clean up the publication field, which is a mess of free form text
             pubs = res[count]['publications']
             newPubs = []
             for pub in pubs:
                 pub = pub.replace("\n", "")
                 # replace commas with html commas as unfortunately I use commasin the browser to split fields
                 pub = pub.replace(",", "&comma;")
                 # translate unicode chars to something the genome browser can display
                 pub = pub.encode('ascii', 'xmlcharrefreplace').decode("ascii")
                 if re.match("^[0-9]+$", pub):
                     #pubUrls.append("https://pubmed.ncbi.nlm.nih.gov/"+pub+"|PMID"+pub)
                     pub = "PMID"+pub
 
                 newPubs.append(pub)
 
             temp_attribute_dictionary['publications'] = ", ".join(newPubs)
 
             #-----------------------------------------------------------------------------------------------------------
             # MouseOverField
             try:
                 mof = 'Gene: ' +  temp_attribute_dictionary['gene_symbol'] + ';' + ' Panel: ' + temp_attribute_dictionary['name'] + ';' + ' MOI: ' + MOI + ';' + ' Phenotypes: ' + temp_attribute_dictionary['phenotypes'] + ';' + ' Confidence: ' + temp_attribute_dictionary['confidence_level'] + ';'
                 temp_attribute_dictionary['mouseOverField'] = mof
             except:
                 temp_attribute_dictionary['mouseOverField'] = ''
             
             #-----------------------------------------------------------------------------------------------------------
             # Column 4
             temp_attribute_dictionary['label'] = temp_attribute_dictionary['gene_symbol'] + ' (' + temp_attribute_dictionary['name'] + ')'
             #-----------------------------------------------------------------------------------------------------------
 
             #-----------------------------------------------------------------------------------------------------------
             rgb_dict = {'3': '0,255,0', '2': '255,191,0', '1':'255,0,0'}
 
             # If the confidence level is set to 0, set to 1
             if temp_attribute_dictionary['confidence_level'] == '0':
                 temp_attribute_dictionary['confidence_level'] = '1'
 
             rgb = rgb_dict[temp_attribute_dictionary['confidence_level']]
             rgb = rgb.strip('"')
 
             '''
             Replace all tab in value with spaces and removes new lines
             '''
             for key, item in temp_attribute_dictionary.items():
                 try:
                     if isinstance(item, int):
                         pass
                     elif isinstance(item, float):
                         pass
                     else:
                         temp_attribute_dictionary[key] = item.replace('\t', ' ').strip().strip("\n").strip("\r")
                 except:
                     pass
 
-            # Version Threshold = 0.99
-            max_num = float(0.99)
-            
-            if version_num > max_num: 
             if temp_attribute_dictionary['label'] not in repeat19 and gene_range_37 is not None:    # Removes Repeats
                 repeat19.append(temp_attribute_dictionary['label'])
                 blockSizes = int(gene_range_37[1]) - int(gene_range_37[0])
                 hg19_dict[string_dict_key] = [chromo_37, int(gene_range_37[0]), gene_range_37[1], temp_attribute_dictionary['label'], 
                                         score, strand, gene_range_37[0], gene_range_37[1], rgb, blockCount, blockSizes, blockStarts, 
                                         temp_attribute_dictionary['gene_symbol'], temp_attribute_dictionary['biotype'], temp_attribute_dictionary['hgnc_id'], 
                                         temp_attribute_dictionary['gene_name'], temp_attribute_dictionary['omim_gene'], ensembl_genes_GRch38_90_ensembl_id,
                                         temp_attribute_dictionary['entity_type'], temp_attribute_dictionary['entity_name'], temp_attribute_dictionary['confidence_level'],    
                                         temp_attribute_dictionary['penetrance'], temp_attribute_dictionary['mode_of_pathogenicity'], temp_attribute_dictionary['publications'], 
                                         temp_attribute_dictionary['evidence'], temp_attribute_dictionary['phenotypes'], temp_attribute_dictionary['mode_of_inheritance'], 
                                         temp_attribute_dictionary['tags'], temp_attribute_dictionary['id'], temp_attribute_dictionary['name'],
                                         temp_attribute_dictionary['disease_group'], temp_attribute_dictionary['disease_sub_group'], temp_attribute_dictionary['status'], 
                                         temp_attribute_dictionary['version'], temp_attribute_dictionary['version_created'], temp_attribute_dictionary['relevant_disorders'], temp_attribute_dictionary['mouseOverField']]
             
             if temp_attribute_dictionary['label'] not in repeat38 and gene_range_38 is not None:    # Remove Repeats
                 repeat38.append(temp_attribute_dictionary['label'])
                 blockSizes = int(gene_range_38[1]) - int(gene_range_38[0])
                 hg38_dict[string_dict_key] = [chromo_38, int(gene_range_38[0]), gene_range_38[1], temp_attribute_dictionary['label'], 
                                         score, strand, gene_range_38[0], gene_range_38[1], rgb, blockCount, blockSizes, blockStarts, 
                                         temp_attribute_dictionary['gene_symbol'], temp_attribute_dictionary['biotype'], temp_attribute_dictionary['hgnc_id'], 
                                         temp_attribute_dictionary['gene_name'], temp_attribute_dictionary['omim_gene'], ensembl_genes_GRch38_90_ensembl_id,
                                         temp_attribute_dictionary['entity_type'], temp_attribute_dictionary['entity_name'], temp_attribute_dictionary['confidence_level'],    
                                         temp_attribute_dictionary['penetrance'], temp_attribute_dictionary['mode_of_pathogenicity'], temp_attribute_dictionary['publications'], 
                                         temp_attribute_dictionary['evidence'], temp_attribute_dictionary['phenotypes'], temp_attribute_dictionary['mode_of_inheritance'], 
                                         temp_attribute_dictionary['tags'], temp_attribute_dictionary['id'], temp_attribute_dictionary['name'],
                                         temp_attribute_dictionary['disease_group'], temp_attribute_dictionary['disease_sub_group'], temp_attribute_dictionary['status'], 
                                         temp_attribute_dictionary['version'], temp_attribute_dictionary['version_created'], temp_attribute_dictionary['relevant_disorders'], temp_attribute_dictionary['mouseOverField']]
+                    
+            
             count = count + 1
             continuous_count = continuous_count + 1
 
     print('Genes with missing coordinates in one assembly (written to missing_genes.txt):')
     print(genes_missing_info)
 
     print('Genes with missing coordinates in both assemblies (written to missing_genes.txt):')
     missSyms = []
     for miss in genes_no_location:
         missSyms.append(miss["gene_symbol"])
     print(",".join(missSyms))
 
     missOfh = open("missing_genes.txt", "w")
     missOfh.write("* Not found in one assembly:\n")
     missOfh.write("\n".join(genes_missing_info))
     missOfh.write("* No location at all:\n")
     for miss in genes_no_location:
         missOfh.write("\t"+str(miss))
         missOfh.write("\n")
     missOfh.close()
 
     return(hg19_dict, hg38_dict)
 
 def downloadGenes(url, onlyPanels=None):
     jsonFh = gzip.open("currentJson/genes.json.gz", "w")
 
     hg19_dict, hg38_dict = getGenesLocations(jsonFh,url, onlyPanels)
 
     jsonFh.close()
     
     pd_19_table = pd.DataFrame.from_dict(hg19_dict)
     pd_38_table = pd.DataFrame.from_dict(hg38_dict)
     pd_19_table = pd_19_table.T
     pd_38_table = pd_38_table.T
     pd_19_table.columns = ["chrom", "chromStart", 
         "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb",
         "blockCount", "blockSizes", "blockStarts", "Gene Symbol", "Biotype", "HGNC ID",
         "Gene Name", "OMIM Gene", "Ensembl Genes", "Entity Type", "Entity Name", "Confidence Level",
         "Penetranace", "Mode of Pathogenicity", "Publications", "Evidence", "Phenotypes", 
         "Mode of Inheritance", "Tags", "Panel ID", "Panel Name", "Disease Group", "Disease Subgroup", 
         "Status", "Panel Version", "Version Created", "Relevant Disorders", "MouseOverField"]
     pd_38_table.columns = ["chrom", "chromStart", 
         "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb",
         "blockCount", "blockSizes", "blockStarts", "Gene Symbol", "Biotype", "HGNC ID",
         "Gene Name", "OMIM Gene", "Ensembl Genes", "Entity Type", "Entity Name", "Confidence Level",
         "Penetranace", "Mode of Pathogenicity", "Publications", "Evidence", "Phenotypes", 
         "Mode of Inheritance", "Tags", "Panel ID", "Panel Name", "Disease Group", "Disease Subgroup", 
         "Status", "Panel Version", "Version Created", "Relevant Disorders", "MouseOverField"]
 
     return pd_19_table, pd_38_table
 
 
 def main():
     " create the 2 x three BED files and convert each to bigBed and update the archive "
 
     # the script uses relative pathnames, so make sure we're always in the right directory
     os.chdir("/hive/data/outside/otto/panelApp")
     
     # First update panelApp England
     # Gene panels track
-    hg19Bed, hg38Bed = downloadGenes("https://panelapp.genomicsengland.co.uk/api/v1/panels/?format=json", onlyPanels=[137, 126])
+    hg19Bed, hg38Bed = downloadGenes("https://panelapp.genomicsengland.co.uk/api/v1/panels/?format=json")
     writeBb(hg19Bed, hg38Bed, "genes")
     # STRs track
     hg19Bed, hg38Bed = downloadTandReps("https://panelapp.genomicsengland.co.uk/api/v1/strs/?format=json")
     writeBb(hg19Bed, hg38Bed, "tandRep")
     # CNV track
     hg38Bed = downloadCnvs('https://panelapp.genomicsengland.co.uk/api/v1/regions/?format=json')
     # no hg19 CNV data yet from PanelApp - still true as of 5/20/2025
     writeBb(None, hg38Bed, "cnv")
 
     flipFiles('England')
     updateGbdbSymlinks('England')
 
     # Now update panelApp Australia
     # Genes track
-    hg19Bed, hg38Bed = downloadGenes("https://panelapp-aus.org/api/v1/panels/?format=json")
+    hg19Bed, hg38Bed = downloadGenes("https://panelapp-aus.org/api/v1/panels/?format=json", onlyPanels=[137, 126])
     writeBb(hg19Bed, hg38Bed, "genesAus")
     # STRs track
     hg19Bed, hg38Bed = downloadTandReps("https://panelapp-aus.org/api/v1/strs/?format=json")
     writeBb(hg19Bed, hg38Bed, "tandRepAus")
     # CNVs track
     hg38Bed = downloadCnvs('https://panelapp-aus.org/api/v1/regions/?format=json')
     # no hg19 CNV data yet from PanelApp - still true as of 5/20/2025
     writeBb(None, hg38Bed, "cnvAus")
 
     flipFiles('Australia')
     updateGbdbSymlinks('Australia')
 
     print("PanelApp otto update: OK")
 
 main()